Гидравлический расчет трубопровода
Содержание:
- Зависимость скорости от напора
- Как посчитать потерю?
- Исходные данные
- Основные положения гидравлического расчета
- Коэффициент гидравлического трения.
- Расчет гидравлических потерь давления в трубопроводе из пластмасс
- Расчет потерь напора воды в трубопроводе
- Формула расчета гидравлических потерь давления
- Алгоритм расчета потерь напора воздуха
- Как заглушить трубу с водой под давлением?
- Нормы давления в трубопроводе
- Гидравлический расчет в системах с естественной циркуляцией
- Постановка задачи
- Как посчитать потерю?
Зависимость скорости от напора
В водоснабжении существует одна весьма важна взаимосвязь – зависимость давления от скорости воды в трубопроводе. Данное свойство подробно описано в физическом законе Бернулли. Подробно рассматривать его мы не будем, но укажем лишь на его суть — при увеличении скорости течения воды её давление в трубе снижается.
Так вышло, что не все сантехнические приборы рассчитаны на эксплуатацию при высоком напоре, в большинстве случаев они ограничены 5-6 атмосферами, — иначе повышенных износ и преждевременный выход из строя.
В центральных магистралях этот показатель значительно выше – может достигать 15 атмосфер, а потому для его снижения при подключении внутренних систем используют трубы меньшего диаметра.
Как посчитать потерю?
Потеря давления в водопроводной сети происходит по следующим причинам (засоры и ржавчина труб не рассматриваются):
- Сопротивление трубы на прямых участках.
- Местное сопротивление (изгибы, клапана и т.п.).
Для удобства подсчетов существуют онлайн-калькуляторы, которые в считанные секунды позволяют выяснить уровень падения давления в трубопроводе. Также для решения этой задачи можно воспользоваться специальными табличными данными.
Расчет на прямых участках
Для расчета потерь нужно выяснить:
- расход воды;
- материал трубопровода, его диаметр и длину.
Выбрав нужное значение в таблице и выяснить величину снижения давления.
Табличные данные для полипропиленовых труб, — для металлических труб в вычисления нужно добавить поправочный коэффициент 1,5. Если длина трубы меньше 100 метров, то результат умножается на коэффициент длины. Так для металлической трубы с диаметром 50 мм, длиной 35 метров и расходом воды в 6.0 м³/ч получится следующий результат: 1,6*0,35*1,5=0,84 мвс.
На местах
Также потери происходят на поворотах и изгибах трубопровода, а также в местах нахождения запорной арматуры и фильтров.
Для расчетов существует специальная таблица, чтобы ей воспользоваться нужно узнать скорость потока воды в трубе, — вычисляется это следующим образом: расход нужно разделить на площадь сечения трубы.
Исходные данные
Процедура вычисления гидравлики трубы осуществляется по формуле Дарси Вейсбаха, на основании следующих сходных параметров:
- Значение расхода воды. Выражается в тоннах, поделенных на один час.
- Температура на начале и в конце расчетного участка трубопровода. Выражается в градусах по Цельсию.
- Диаметр внутренней части. Выражается в миллиметрах.
- Размер длины трубы на расчетном участке. Выражается в метрах.
- Шероховатость внутренней части. Выражается в миллиметрах. Указываемое значение коэффициента трения должно соответствовать аналогичному параметру старых систем трубопроводов.
- Значение сопротивления трения местных потерь напора.
В данном видео рассмотрим гидравлический расчет трубопровода:
По имеющимся данным определяются оставшиеся переменные. Зная формулы, можно рассчитать:
- Значение средней температуры (оно изменяется в процессе течения воды). Необходимость вычисления этого параметра обусловлена тем, что температура воды в начале участка больше, чем в его конце.
- Коэффициент вязкости жидкости.
- Средняя плотность потоков жидкости.
- Данные о расходе воды.
- Значение скорости движения жидкости.
- Число Рейнольдса.
- Значение гидравлического трения.
- Стандартная и удельная величина потери напора в трубопроводе.
- Параметр потери давления в точках пересечения труб.
- Непосредственна сама характеристика гидравлического сопротивления.
Основные положения гидравлического расчета
Рабочий носитель (жидкость, газ, пар), переносимый проектируемым трубопроводом, в силу своих особых физико-химических свойств определяет характер течения среды в данном трубопроводе. Одним из основных показателей характеризующих рабочий носитель, является динамическая вязкость, характеризуемая коэффициентом динамической вязкости – μ.
Инженер-физик Осборн Рейнольдс (Ирландия), занимавшийся изучением течения различных сред, в 1880 году провел серию испытаний, по результату которых было выведено понятие критерия Рейнолдса (Re) – безразмерной величины, описывающей характер потока жидкости в трубе. Расчет данного критерия проводится по формуле:
Критерий Рейнольдса (Re) дает понятие о соотношении сил инерции к силам вязкого трения в потоке жидкости. Значение критерия характеризует изменение соотношения указанных сил, что, в свою очередь, влияет на характер потока носителя в трубопроводе. Принято выделять следующие режимы потока жидкого носителя в трубе в зависимости от значения данного критерия:
ламинарный поток (Re 4000) – устойчивый режим, при котором в каждой отдельной точке потока происходит изменение его направления и скорости, что в итоге приводит к выравниванию скорости движения потока по объему трубы.
Критерий Рейнольдса зависит от напора, с которым насос перекачивает жидкость, вязкости носителя при рабочей температуре и геометрических размеров используемой трубы (d, длина). Данный критерий является параметром подобия для течения жидкости,поэтому, используя его, можно осуществлять моделирование реального технологического процесса в уменьшенном масштабе, что удобно при проведении испытаний и экспериментов.
Проводя расчеты и вычисления по уравнениям, часть заданных неизвестных величин можно взять из специальных справочных источников. Профессор, доктор технических наук Ф. А. Шевелев разработал ряд таблиц для проведения точного расчета пропускной способности трубы. Таблицы включают значения параметров, характеризующих как сам трубопровод (размеры, материалы), так и их взаимосвязь с физико-химическими свойствами носителя. Кроме того, в литературе приводится таблица приближенных значений скоростей движения потока жидкости, пара,газа в трубе различного сечения.
Коэффициент гидравлического трения.
Для определения гидравлического сопротивления от трения о стенки трубы Sтр необходимо знать параметр Дарси λ – коэффициент гидравлического трения по длине.
В технической литературе приводится значительное количество формул разных авторов, по которым выполняется вычисление коэффициента гидравлического трения в различных диапазонах значений числа Рейнольдса.
Обозначения в таблице:
- Re – число Рейнольдса;
- k – эквивалентная шероховатость внутренней стенки трубы (средняя высота выступов), м.
В приведена еще одна интересная формула расчета коэффициента гидравлического трения:
λ=0,11·[(68/Re+kD+(1904/Re) 14 )/(115·(1904/Re) 10 +1)] 0,25
Вячеслав Леонидович выполнил проверочные расчеты и выявил, что вышеприведенная формула является наиболее универсальной в широком диапазоне чисел Рейнольдса!
Значения, полученные по этой формуле чрезвычайно близки значениям:
функции λ=64/Re для зоны ламинарного характера потока в диапазоне 10 0,25 для зоны турбулентного характера потока при Re>4500; в диапазоне 1500 Внимание!
В зоне переходного характера потока происходит смена знака наклона кривой λ, что может вызвать неработоспособность систем автоматического регулирования! ПФ КтрТрубаВода(Pвода,tвода,G,D,kэ) при турбулентном потоке существенно зависит от значения kэ – эквивалентной шероховатости внутренней поверхности трубы
В связи с этим следует обращать внимание на задание объективного значения kэ с учётом используемых при монтаже труб (см. стр.78÷83)
Расчет гидравлических потерь давления в трубопроводе из пластмасс
Расчет гидравлических потерь давления в трубопроводе из пластмасс
Гидравлический расчет является важной составляющей процесса выбора типоразмера трубы для строительства трубопровода. В нормативной литературе по проектированию этот ясный с точки зрения физики вопрос основательно запутан
На наш взгляд, это связано с попыткой описать все варианты расчета коэффициента трения, зависящего от режима течения, типа жидкости и ее температуры, а также от шероховатости трубы, одним (на все случаи) уравнением с вариацией его параметров и введением всевозможных поправочных коэффициентов. При этом краткость изложения, присущая нормативному документу, делает выбор величин этих коэффициентов в значительной степени произвольным и чаще всего заканчивается номограммами, кочующими из одного документа в другой.
С целью более подробного анализа предлагаемых в документах методов расчета представляется полезным вернуться к исходным уравнениям классической гидродинамики (1).
Для ламинарного (чисто вязкого режима течения) коэффициент трения определяется теоретически в соответствии с уравнением Пуазейля:
λ = 64/Re (2)
где: Re – критерий (число) Рейнольдса.
Опытные данные строго подчиняются этому закону в пределах значений Рейнольдса ниже критического (Re 100000 предложено много расчетных формул, но практически все они дают один и тот же результат .
На рис.1 показано, как «работают» уравнения (2) – (4) в указанном диапазоне чисел Рейнольдса, который достаточен для описания всех реальных случаев течения жидкости в гидравлически гладких трубах.
Шероховатость стенки трубы влияет на гидравлическое сопротивление только при турбулентном потоке, но и в этом случае, из-за наличия ламинарного пограничного слоя существенно сказывается только при числах Рейнольдса, превышающих некоторое значение, зависящее от относительной шероховатости ξ/D, где ξ – расчетная высота бугорков шероховатости, м.
считается гидравлически гладкой, и коэффициент трения определяется по уравнениям (2) – (4).
где: ξ э – нормативная эквивалентная шероховатость (Таблица 1).
Расчет потерь напора воды в трубопроводе
Чтобы выбрать насос для скважины, необходимо сделать расчёт потребного напора, а одна из частей определения потребного напора – это расчёт потерь напора в трубопроводе. Именно этой части вопроса посвящена данная статья.
Потеря напора в трубопроводе связана с тем, что поток воды, протекающий внутри трубы, испытывает сопротивление. Его величина зависит от:
- диаметра трубы – чем меньше диаметр, тем больше сопротивление
- скорости потока – чем больше скорость потока, тем больше сопротивление
- гладкости внутренней поверхности трубы.
Даже двигаясь по прямой, горизонтальной трубе, поток воды испытывает сопротивление, пусть и небольшое. При большой протяженности трубопровода суммарное сопротивление может оказаться значительным.
Расчёт потерь напора на прямых участках трубопровода
Чтобы не вдаваться в глубокие теоретические расчеты, можно воспользоваться уже готовыми таблицами с вычисленными данными для всех основных диаметров труб и расходов воды. Сейчас повсеместно используются полимерные трубопроводы – из полипропилена, полиэтилена низкого или высокого давления и других полимеров. Такие трубы имеют массу преимуществ перед стальными трубами: они легче, проще в монтаже, не подвержены коррозии, дешевле, более гладкие, и как следствие в них меньше потери напора.
В этой таблице приведены значения потери напора на 100 м трубопровода. Потеря напора указана в метрах водного столба.
Для стальных труб можно использовать эти же значения, умножив их на коэффициент 1,5.
Например, при расходе воды 0,5 м 3 /ч в трубопроводе с внутренним диаметром 19 мм и длиной 100 м потеря напора составляет 2,1 м.
Расчёт потери напора на местных сопротивлениях
Кроме того, потеря напора происходит в местных сопротивлениях: поворотах, изгибах, вентилях, заслонках, в разветвлениях трубопровода и в местах его сужения или расширения. Потери напора воды в них зависят от скорости потока и формы местного сопротивления.
Ниже в таблице приведены потери напора в основных местных сопротивлениях:
Потеря местного сопротивления указана в сантиметрах водного столба.
Расход воды соотносится со скоростью потока так:
где Q – это расход воды (в м 3 /с), S – площадь поперечного сечения (в м 2 ), v – скорость потока (в м/с). Площадь поперечного сечения для трубы S = π*D2/4, где D – внутренний диаметр трубы.
Например, при расходе воды 0,5 м 3 /ч (0,000138889 м 3 /с) в трубопроводе с внутренним диаметром 19 мм (S = 0,000283385 м 2 ), скорость потока составит
v = Q / S = 0,000138889 / 0,000283385 = 0,49 м/с
Местное сопротивление колена при этом будет 1,9 см, а клапана 32 см.
Как видно, потери напора на местных сопротивлениях – это самая малая часть потерь во всём трубопроводе. Они могут быть значительными только при больших скоростях потока, т.е. когда через тонкую трубу проходит большой объем воды. Использования более толстых труб, диаметр, которых, соответствует расходу воды, практически снимает проблему местных сопротивлений. При расчете потерь напора воды (и дальнейшем выборе насоса для скважины) достаточно заложить на местные сопротивления несколько метров напора, с небольшим запасом для верности – от 2 до 4 м.
Вместе с потерями напора воды в прямых участках трубопровода, эта цифра для небольшого загородного дома может уложиться в 5 м.
Для того, чтобы правильно выбрать насос для своей скважины, необходимо знать, потребный напор – т.е. напор, который необходим для водопроводной системы дома. В этой статье речь пойдёт о расчете потребного напора и расчете потерь напора в трубах водопровода на примере небольшого загородного дома.
В этой статье речь пойдет о характеристиках насосов и скважин, и о том, как правильно выбрать для своей скважины насос, исходя из имеющихся нужд.
Формула расчета гидравлических потерь давления
В этой статье мы решим задачку на потерю напора в трубопроводе. Данная статья поможет вам понять, как идет сопротивление движению потока. На реальных цифрах, опишу алгоритм как это делать. Используем основные формулы.
Разберем простой пример с трубой, как видно на изображении в начале трубы насос потом идет манометр, который позволяет измерить давление жидкости в начале трубы. Через определенную длину установлен второй манометр, который позволяет измерить давление в конце трубы. Ну и в самом конце стоит кран. Эта схема достаточно проста, и я попытаюсь привести примеры. И так начнем.
Вообще существует не один способ как узнать потерю напора: Способ, когда известно давление вначале и в конце трубы, можно вычислить потерю напора по формуле: М1-М2=Давление, то есть эта разница между двумя манометрами. Допустим у нас получилось, грубо говоря 0,1 МПа, что составляет одну атмосферу. Это значит у нас потеря напора по длине составляет 0,1 МПа
Обратите внимание, мы можем указывать потерю напора по двум величинам, это по гидростатическому давлению, что составляет 0,1 МПа и по высоте напора водного столба в метрах, что составляет 10 метров. Как я не однократно говорил каждые 10 метров это одна атмосфера давления
Существует ряд методов, как рассчитать потерю напора не имея манометров на трубах. Ученые исследователи приготовили для нашего пользования замечательные формулы и цифры, которые нам пригодятся.
Существует хорошая формула которая позволяет вычислить потерю напора по длине трубопровода.
h-потеря напора здесь она измеряется в метрах. λ-коеффициент гидравлического трения, находится дополнительными формулами о которых опишу ниже. L-длина трубопровода измеряется в метрах. D-внутренний диаметр трубы, то есть диаметр потока жидкости. Должен быть вставлен в формулу в метрах. V-скорость потока жидкости. Измеряется [Метр/секунда]. g-ускорение свободного падения равен 9,81 м/с 2 |
А теперь поговорим о коэффициенте гидравлического трения.
Формулы нахождения этого коэффициента зависит от числа Рейнольдса и эквивалента шероховатости труб.
Напомню эту формулу (она применима только к круглым трубам):
V-Скорость потока жидкости. Измеряется [Метр/секунда]. D-Внутренний диаметр трубы, то есть диаметр потока жидкости. Должен быть вставлен в формулу в метрах. ν-Кинематическая вязкость. Это обычно для нас готовая цифра, находится в специальных таблицах. |
Далее находим формулу для нахождения коэффициента гидравлического трения по таблице:
Здесь Δэ — Эквивалент шероховатости труб. Эта величина в таблицах указывается в милиметрах, но вы когда будете вставлять в формулу обязательно переводите в метры. Вообще не забывайте соблюдать пропорциональность единиц измерения и не смешивайте в формулах разных типа с .
d-внутренний диаметр трубы, то есть диаметр потока жидкости.
Также хочу подметить, что подобные величины по шероховатости бывают абсолютными и относительными или даже есть относительные коэффициенты. Поэтому когда если будете искать таблицы с величинами, то величина эта должа называться «эквивалентом шероховатости труб» и не как иначе, а то результат будет ошибочный. Эквивалент означает — средняя высота шероховатости.
В некоторых ячейках таблицы указаны две формулы, вы можете считать на любой выбранной, они почти дают одинаковый результат.
Таблица: (Эквивалент шероховатости)
Таблица: (Кинематическая вязкость воды)
А теперь давайте решим задачу:
Найти потерю напора по длине при движении воды по чугунной новой трубе D=500мм при расходе Q=2 м 3 /с, длина трубы L=900м, температура t=16°С.
Дано: D=500мм=0.5м Q=2 м 3 /с L=900м t=16°С Жидкость: H2O Найти: h-? |
Решение: Для начала найдем скорость потока в трубе по формуле:
Сдесь ω — площадь сечения потока. Находится по формуле:
ω=πR 2 =π(D 2 /4)=3.14*(0,5 2 /4)=0,19625 м 2
Далее находим число Рейнольдса по формуле:
Re=(V*D)/ν=(10,19*0.5)/0,00000116=4 392 241
ν=1,16*10 -6 =0,00000116. Взято из таблицы. Для воды при температуре 16°С.
Δэ=0,25мм=0,00025м. Взято из таблицы, для новой чугунной трубы.
Далее сверяемся по таблице где находим формулу по нахождению коэффициента гидравлического трения.
Далее завершаем формулой:
h=λ*(L*V 2 )/(D*2*g)=0,01645*(900*10,19 2 )/(0,5*2*9,81)=156,7 м.
Ответ: 156,7 м. = 1,567 МПа.
Давайте рассмотрим пример, когда труба идет вверх под определенным углом.
В этом случае нам к обычной задаче нужно прибавить высоту(в метрах) к потери напора. Если труба будет идти на спуск в низ, то тут необходимо вичитать высоту.
Чтобы в ручную не считать всю математику я приготовил специальную программу:
Источник
Алгоритм расчета потерь напора воздуха
Расчет нужно начинать с составления схемы системы вентиляции с обязательным указанием пространственного расположения воздуховодов, длины каждого участка, вентиляционных решеток, дополнительного оборудования для очистки воздуха, технической арматуры и вентиляторов. Потери определяются вначале по каждой отдельной линии, а потом суммируются. По отдельному технологическому участку потери определяются с помощью формулы P = L×R+Z, где P – потери воздушного давления на расчетном участке, R – потери на погонном метре участка, L – общая длина воздуховодов на участке, Z – потери в дополнительной арматуре системы вентиляции.
Для расчета потерь давления в круглом воздуховоде используется формула Pтр. = (L/d×X) × (Y×V)/2g. X – табличный коэффициент трения воздуха, зависит от материала изготовления воздуховода, L – длина расчетного участка, d – диаметр воздуховода, V – требуемая скорость воздушного потока, Y – плотность воздуха с учетом температуры, g – ускорение падения (свободного). Если система вентиляции имеет квадратные воздуховоды, то для перевода круглых значений в квадратные следует пользоваться таблицей № 2.
150
200
250
300
350
400
450
500
250 210 245 275
300 230 265 300 330
350 245 285 325 355 380
400 260 305 345 370 410 440
450 275 320 365 400 435 465 490
500 290 340 380 425 455 490 520 545
550 300 350 400 440 475 515 545 575
600 310 365 415 460 495 535 565 600
650 320 380 430 475 515 555 590 625
700 390 445 490 535 575 610 645
750 400 455 505 550 590 630 665
800 415 470 520 565 610 650 685
850 480 535 580 625 670 710
900 495 550 600 645 685 725
950 505 560 615 660 705 745
1000 520 575 625 675 720 760
1200 620 680 730 780 830
1400 725 780 835 880
1600 830 885 940
Как заглушить трубу с водой под давлением?
Поставить заглушку на трубу – дело не хитрое, если делать это без напора.
Но когда воду нельзя перекрыть, то многие подумают, что сделать это невозможно. Однако это не так.
Обычную заглушку поставить не получится, так как сильный напор не даст возможность даже наживить её на резьбу.
Но если воспользоваться вместо неё обычным водопроводным краном, то всё получится.
Метод заключается в том, чтобы кран, который будет заглушать трубу, перевести в открытый режим, — вода будет проходить сквозь него и тем самым даст возможность его наживить на резьбу трубы. Как только кран-заглушка будет наживлен и закручен на несколько витков, его можно перекрывать.
Перед работами нужно убедиться в том, что ничто не помешает выполнению работ, а также подготовить емкость для набора воды, тряпочную ветошь для уборки (чтоб не протопить соседей).
Этим методом можно воспользоваться даже в случае, если заглушаемая труба будет без резьбы, — тогда на кран-заглушку нужно надеть гибкий шланг, который бы налезал на трубу.
Кран, как и в первом случае, нужно полностью открыть, а шланг одевать на трубу — крепить его нужно на один-два хомута. После этого можно окончательно перекрывать воду.
Важно. Нельзя применять этот способ для заглушки трубопроводов горячей воды без полного перекрытия системы.
Нормы давления в трубопроводе
Водопроводное давление измеряется в барах. Величина имеет альтернативное название – атмосферная единица. Под напором в 1 бар вода может подняться на высоту 10 м.
В городских сетях обычно давление составляет 4-4,5 бара, чего хватает для обслуживания многоэтажных домов.
По нормативным документам, в частности указаниям сборника СНиП 2.0401-85, допустимое давление для холодной воды варьируется в пределах от 0.3 до 6 бар, для горячей – от 0.3 до 4.5. Но из этого не следует, что давление в 0.3 атмосферы будет оптимальным. Здесь приведены лишь допустимые границы напора.
Галерея изображений
Фото из
Низкое давление влияет на эксплуатацию
Затруднения с набором воды
Сложность приема процедур
Отключение стиральной машины
Угроза перегорания проточного водонагревателя
Последствия превышения давления
Излишний напор в точках водозабора
Выход из строя электронного управления
Жители частных домов вынуждены рассчитывать давление в водопроводе индивидуально. В случае, если система автономная, напор может превышать допустимые по нормативным документам границы. Он может колебаться в районе 2.5-7.5 бар, а иногда достигать и 10 бар.
Стандартными значениями для нормальной работы системы с насосной станцией считается интервал 1,4 – 2,8 бар, соответствующие заводской установке показателей реле давления.
Если обеспечить чрезмерно высокое давление в системе, то некоторые чувствительные приборы могут выходить из строя или некорректно работать. Поэтому в трубопроводе давление не должно превышать 6.5 бар.
Высокое давление в водопроводе может вызвать протекание трубы, поэтому важно предварительно рассчитывать оптимальный уровень напора самостоятельно
Фонтанирующие артезианские скважины способны выдать напор в 10 бар. Такое давление способны выдержать исключительно приваренные соединения, большинство же фитингов, запорно-регулирующих узлов под его действием разрушаются, в результате чего возникают течи на участках.
Определять, какое необходимо давление воды для нормального функционала водопровода загородного дома, необходимо с учетом используемых бытовых приборов. Некоторые виды сантехнических устройств не работают при низком давлении.
Например, для джакузи необходимо давление 4 бара, для душа, системы пожаротушения – 1.5 бара, для стиральной машинки – 2 бара. Если предусматривать возможность полива газона, то здесь должен быть сильный напор в 4, иногда – в 6 бар.
Бытовые сантехнические приборы, подсоединенные к водопроводу, способны корректно работать исключительно от определенного давления, которое обычно составляет не меньше 1.5 бара
Оптимальным показателем давления для загородного дома будет отметка в 4 бар. Такого напора хватит для исправной работы всех сантехнических устройств. При этом большинство фитингов, узлов запорно-регулирующей арматуры способны его выдерживать.
Давление в 4 бар может обеспечить далеко не каждая система. Обычно для загородных домов давление в водопроводе составляет 1-1.5 бар, что соответствует самотеку.
Гидравлический расчет в системах с естественной циркуляцией
Алгоритм проведения вычисления также может меняться в зависимости от типа системы. Различают два основных вида:
- Естественная циркуляция – самостоятельное движение воды за счета изначального параметра напора (его также называют располагаемым).
- Принудительная циркуляция – системы, в которых жидкость передвигается за счет работы дополнительных насосов и механизмов.
Естественно, что в зависимости от конкретной конструкции описываемый в статье параметр может изменяться. Однако существуют следующие рекомендации по созданию систем трубопроводов с естественной циркуляцией:
- Максимальная длина горизонтальных участков – не более двадцати метров.
- Рекомендуемый диаметр магистральный трубы – 5 см.
- Рекомендуемое значение диаметра каждой тридцать пятой секции – 5 см.
- При расчете на каждые десять метров требуется дополнительно прибавлять половину диаметра трубы к ее размерам в вычислениях – это требуется для снижения скорости носителя тепла и нивелирования потерь напора за счет трения.
Постановка задачи
Гидравлический расчёт при разработке проекта трубопровода направлен на определение диаметра трубы и падения напора потока носителя. Данный вид расчёта проводится с учетом характеристик конструкционного материала, используемого при изготовлении магистрали, вида и количества элементов, составляющих систему трубопроводов(прямые участки, соединения, переходы, отводы и т. д.), производительности,физических и химических свойств рабочей среды.
Многолетний практический опыт эксплуатации систем трубопроводов показал, что трубы, имеющие круглое сечение, обладают определенными преимуществами перед трубопроводами, имеющими поперечное сечение любой другой геометрической формы:
- минимальное соотношением периметра к площади сечения, т.е. при равной способности, обеспечивать расход носителя, затраты на изолирующие и защитные материалы при изготовлении труб с сечением в виде круга, будут минимальными;
- круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды сточки зрения гидродинамики, достигается минимальное трение носителя о стенки трубы;
- форма сечения в виде круга максимально устойчива к воздействию внешних и внутренних напряжений;
- процесс изготовления труб круглой формы относительно простой и доступный.
Подбор труб по диаметру и материалу проводится на основании заданных конструктивных требований к конкретному технологическому процессу. В настоящее время элементы трубопровода стандартизированы и унифицированы по диаметру. Определяющим параметром при выборе диаметра трубы является допустимое рабочее давление, при котором будет эксплуатироваться данный трубопровод.
Основными параметрами, характеризующими трубопровод являются:
- условный (номинальный) диаметр – DN;
- давление номинальное – PN;
- рабочее допустимое (избыточное) давление;
- материал трубопровода, линейное расширение, тепловое линейное расширение;
- физико-химические свойства рабочей среды;
- комплектация трубопроводной системы (отводы, соединения, элементы компенсации расширения и т.д.);
- изоляционные материалы трубопровода.
Условный диаметр (проход) трубопровода (DN) – это условная безразмерная величина, характеризующая проходную способность трубы, приблизительно равная ее внутреннему диаметру. Данный параметр учитывается при осуществлении подгонки сопутствующих изделий трубопровода (трубы, отводы, фитинги и др.).
Условный диаметр может иметь значения от 3 до 4000 и обозначается: DN 80.
Условный проход по числовому определению примерно соответствует реальному диаметру определенных отрезков трубопровода. Численно он выбран таким образом, что пропускная способность трубы повышается на 60-100% при переходе от предыдущего условного прохода к последующему.Номинальный диаметр выбирается по значению внутреннего диаметра трубопровода. Это то значение, которое наиболее близко к реальному диаметру непосредственно трубы.
Давление номинальное (PN) – это безразмерная величина, характеризующая максимальное давление рабочего носителя в трубе заданного диаметра, при котором осуществима длительная эксплуатация трубопровода при температуре 20°C.
Значения номинального давления были установлены на основании продолжительной практики и опыта эксплуатации: от 1 до 6300.
Номинальное давление для трубопровода с заданными характеристиками определяется по ближайшему к реально создаваемому в нем давлению. При этом,вся трубопроводная арматура для данной магистрали должна соответствовать тому же давлению. Расчет толщины стенок трубы проводится с учетом значения номинального давления.
Как посчитать потерю?
Потеря давления в водопроводной сети происходит по следующим причинам (засоры и ржавчина труб не рассматриваются):
- Сопротивление трубы на прямых участках.
- Местное сопротивление (изгибы, клапана и т.п.).
Для удобства подсчетов существуют онлайн-калькуляторы, которые в считанные секунды позволяют выяснить уровень падения давления в трубопроводе. Также для решения этой задачи можно воспользоваться специальными табличными данными.
Расчет на прямых участках
Для расчета потерь нужно выяснить:
- расход воды;
- материал трубопровода, его диаметр и длину.
Выбрав нужное значение в таблице и выяснить величину снижения давления.
Табличные данные для полипропиленовых труб, — для металлических труб в вычисления нужно добавить поправочный коэффициент 1,5. Если длина трубы меньше 100 метров, то результат умножается на коэффициент длины. Так для металлической трубы с диаметром 50 мм, длиной 35 метров и расходом воды в 6.0 м³/ч получится следующий результат: 1,6*0,35*1,5=0,84 мвс.
На местах
Также потери происходят на поворотах и изгибах трубопровода, а также в местах нахождения запорной арматуры и фильтров.
Для расчетов существует специальная таблица, чтобы ей воспользоваться нужно узнать скорость потока воды в трубе, — вычисляется это следующим образом: расход нужно разделить на площадь сечения трубы.