Просто о сложном: сравнительная таблица теплопроводности строительных материалов

Содержание:

Можно ли повысить теплопроводность меди

Не так давно, группа западных ученых провела ряд исследований по повышению теплопроводности меди и ее сплавов. Для работы они применяли пленки, выполненные из меди, с  нанесенным на ее поверхность тонким слоем графена. Для его нанесения использовали технологию его осаждения из газа. При проведении исследований применялось множество приборов, которые были призваны подтвердить объективность полученных результатов.Результаты исследований показали то, что графен обладает одним из самых высоких показателей теплопроводности. После того, как его нанесли на медную подложку, теплопроводность несколько упала. Но, при проведении этого процесса происходит нагревание меди и в ней происходит увеличение зерен, и в результате повышается проходимость электронов.

Графен с медной фольгой

При нагревании меди, но без нанесения этого материала, зерна сохранили свой размер.Одно из назначений меди это отведение лишнего тепла из электронных и электрических схем. Использование графенового напыления эта задача будет решаться значительно эффективнее.

Тепловой расчет

Для понимания влияния температуры окружающей среды и теплового сопротивления материалов, используемых для печатной платы, в лаборатории COTCO Ltd. были исследованы светодиоды DORADO, припаянные на плату Al PCB размером 20*20*2 мм. Температура корпуса измерялась с помощью термозонда, введенного сквозь отверстие диаметром 1 мм в плате под медным основанием корпуса светодиода (Рис. 4).

Через 30 минут после включения питания была проведено измерение температуры корпуса. Данные измерений приведены в таблице 2.

Рис. 4

Таблица 2. Температура корпуса через 30 мин. после включения
Модель DORADO If (мА) Vf (В) PD, Вт. Ta (0C) Tc (0C) Tj (0C) θJc (0C/Вт)
LD-700AWN1-70 350 3.6 1.26 25 77 88 9
LD-700ABL1-E0 300 3.6 1.08 25 70 81 10
LD-700APG1-E0 300 3.6 1.08 25 72 83 10
LD-701CHR1-A5 450 2.4 1.08 24 68 82 13
LD-701CYL1-A5 450 2.4 1.08 24 70 84 13

Наряду с радиатором из Al PCB были исследованы и другие виды печатных плат размером 20*20 мм из фольгированного стеклотекстолита FR4, и из двустороннего стеклотекстолита с просверленными дополнительными сквозными металлизированными отверстиями диаметром 0,4 мм. При пайке DORADO эти отверстия заполняет припой. На этих платах не установлены никакие другие компоненты, излучающие тепло во время работы. Эксперимент проводился при температуре окружающей среды 25 °C и нормальной влажности (Рис. 5).

Рис. 5

Спустя 30 минут после подачи питания радиатор из Al PCB имел более низкую температуру, чем печатная плата из фольгированного стеклотекстолита FR4, так как у него более низкое тепловое сопротивление, что позволяет отдать большее количество тепла в окружающую среду.

Однако печатная плата из двустороннего фольгированного стеклотекстолита за счет наличия дополнительных металлизированных отверстий имеет тепловые характеристики даже лучше, чем у фольгированного алюминия (Табл. 3).

Таблица 3.
Материал платы Измеренная температура θ ba (тепловое сопротивление между платой и окружающей средой)
Стеклотекстолит FR4 84.8 °C 59.8 °C/Вт
Al PCB 76.6 °C 51.6 °C/Вт
Стеклотекстолит FR4 с отверстиями 75.5 °C 50.5 °C/Вт

При увеличении количества отверстий теплопроводность платы из фольгированного стеклотекстолита FR4 еще более увеличивается (Рис. 6, 7).

Рис. 6

Рис. 7

Необходимость расчетов

Для чего же необходимо проводить эти вычисления, есть ли от них хоть какая-то польза на практике? Разберемся подробнее.

Оценка эффективности термоизоляции

В разных климатических регионах России разный температурный режим, поэтому для каждого из них рассчитаны свои нормативные показатели сопротивления теплопередаче. Проводятся эти расчеты для всех элементов строения, контактирующих с внешней средой. Если сопротивление конструкции находится в пределах нормы, то за утепление можно не беспокоиться.

В случае, если термоизоляция конструкции не предусмотрена, то нужно сделать правильный выбор утеплительного материала с подходящими теплотехническими характеристиками.

Тепловые потери

Тепловые потери дома

Не менее важная задача – прогнозирование тепловых потерь, без которого невозможно правильно спланировать систему отопления и создать идеальную термоизоляцию. Такие вычисления могут понадобиться при выборе оптимальной модели котла, количества необходимых радиаторов и правильной их расстановки.

Для определения тепловых потерь через любую конструкцию нужно знать сопротивление, которое вычисляется с помощью разницы температур и количества теряемого тепла, уходящего с одного квадратного метра ограждающей конструкции. И так, если мы знаем площадь конструкции и ее термическое сопротивление, а также знаем для каких климатических условий производится расчет, то можем точно определить тепловые потери. Есть хороший калькулятор расчета теплопотерь дома ( он может даже посчитать сколько будет уходить денег на отопление, примерно конечно).

Такие расчеты в здании проводятся для всех ограждающих конструкций, взаимодействующих с холодными потоками воздуха, а затем суммируются для определения общей потери тепла. На основании полученной величины проектируется система отопления, которая должна полностью компенсировать эти потери. Если же потери тепла получаются слишком большими, они влекут за собой дополнительные финансовые затраты, а это не всем «по карману». При таком раскладе нужно задуматься об улучшении системы термоизоляции.

Отдельно нужно поговорить про окна, для них сопротивление теплопередаче определяются нормативными документами. Самостоятельно проводить расчеты не нужно. Существуют уже готовые таблицы, в которых внесены значения сопротивления для всех типов конструкций окон и балконных дверей.Тепловые потери окон рассчитываются исходя из площади, а также разницы температур по разные стороны конструкции.

Расчеты, приведенные выше, подходят для новичков, которые делают первые шаги в проектировании энергоэффективных домов. Если же за дело берется профессионал, то его расчеты более сложные, так как дополнительно учитывается множество поправочных коэффициентов – на инсоляцию, светопоглощение, отражение солнечного света, неоднородность конструкций и другие.

Таблица теплового сопротивления строительных материалов

Всю необходимую информацию для индивидуальных расчетов конкретных построек дает представленная ниже таблица сопротивления теплопередаче. Образец расчетов, приведенный выше, в совокупности с данными таблицы может также использоваться и для оценки потери тепловой энергии. Для этого используют формулу Q = S * T / R, где S – площадь ограждающей конструкции, а T – разность температур на улице и в помещении. В таблице приведены данные для стены толщиной 1 метр.

Материал R, (м 2 * °C)/Вт
Железобетон 0,58
Керамзитобетонные блоки 1,5-5,9
Керамический кирпич 1,8
Силикатный кирпич 1,4
Газобетонные блоки 3,4-12,29
Сосна 5,6
Минеральная вата 14,3-20,8
Пенополистирол 20-32,3
Экструдированный пенополистирол 27,8
Пенополиуретан 24,4-50

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материала Коэффициент теплопроводности Вт/(м·°C)
В сухом состоянии При нормальной влажности При повышенной влажности
Войлок шерстяной 0,036-0,041 0,038-0,044 0,044-0,050
Каменная минеральная вата 25-50 кг/м3 0,036 0,042 0,,045
Каменная минеральная вата 40-60 кг/м3 0,035 0,041 0,044
Каменная минеральная вата 80-125 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 140-175 кг/м3 0,037 0,043 0,0456
Каменная минеральная вата 180 кг/м3 0,038 0,045 0,048
Стекловата 15 кг/м3 0,046 0,049 0,055
Стекловата 17 кг/м3 0,044 0,047 0,053
Стекловата 20 кг/м3 0,04 0,043 0,048
Стекловата 30 кг/м3 0,04 0,042 0,046
Стекловата 35 кг/м3 0,039 0,041 0,046
Стекловата 45 кг/м3 0,039 0,041 0,045
Стекловата 60 кг/м3 0,038 0,040 0,045
Стекловата 75 кг/м3 0,04 0,042 0,047
Стекловата 85 кг/м3 0,044 0,046 0,050
Пенополистирол (пенопласт, ППС) 0,036-0,041 0,038-0,044 0,044-0,050
Экструдированный пенополистирол (ЭППС, XPS) 0,029 0,030 0,031
Пенобетон, газобетон на цементном растворе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементном растворе, 400 кг/м3 0,11 0,14 0,15
Пенобетон, газобетон на известковом растворе, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на известковом растворе, 400 кг/м3 0,13 0,22 0,28
Пеностекло, крошка, 100 — 150 кг/м3 0,043-0,06
Пеностекло, крошка, 151 — 200 кг/м3 0,06-0,063
Пеностекло, крошка, 201 — 250 кг/м3 0,066-0,073
Пеностекло, крошка, 251 — 400 кг/м3 0,085-0,1
Пеноблок 100 — 120 кг/м3 0,043-0,045
Пеноблок 121- 170 кг/м3 0,05-0,062
Пеноблок 171 — 220 кг/м3 0,057-0,063
Пеноблок 221 — 270 кг/м3 0,073
Эковата 0,037-0,042
Пенополиуретан (ППУ) 40 кг/м3 0,029 0,031 0,05
Пенополиуретан (ППУ) 60 кг/м3 0,035 0,036 0,041
Пенополиуретан (ППУ) 80 кг/м3 0,041 0,042 0,04
Пенополиэтилен сшитый 0,031-0,038
Вакуум
Воздух +27°C. 1 атм 0,026
Ксенон 0,0057
Аргон 0,0177
Аэрогель (Aspen aerogels) 0,014-0,021
Шлаковата 0,05
Вермикулит 0,064-0,074
Вспененный каучук 0,033
Пробка листы 220 кг/м3 0,035
Пробка листы 260 кг/м3 0,05
Базальтовые маты, холсты 0,03-0,04
Пакля 0,05
Перлит, 200 кг/м3 0,05
Перлит вспученный, 100 кг/м3 0,06
Плиты льняные изоляционные, 250 кг/м3 0,054
Полистиролбетон, 150-500 кг/м3 0,052-0,145
Пробка гранулированная, 45 кг/м3 0,038
Пробка минеральная на битумной основе, 270-350 кг/м3 0,076-0,096
Пробковое покрытие для пола, 540 кг/м3 0,078
Пробка техническая, 50 кг/м3 0,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей

Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала

Термическое сопротивление — стенка

Термические сопротивления стенки и загрязнений находят в зависимости от толщины собственно стенки и толщины слоя загрязнений ( по практическим данным), а также от значений коэффициентов теплопроводности материала стенки и загрязнений.

Термическое сопротивление стенки понижает К.

Термические сопротивления стенки и ртути пренебрежимо малы по сравнению с внешним термическим сопротивлением, так что постоянная времени представляет собой произведение внешнего термического сопротивления на тепловую емкость стенки и ртути. Теплопередачей через торец термобаллона пренебрегаем.

Термические сопротивления стенки и загрязнений находят в зависимости от толщины собственно стенки и толщины слоя загрязнений ( по практическим данным), а также от значений коэффициентов теплопроводности материала стенки и загрязнений.

Термическое сопротивление стенки вместе с сопротивлением теплообмену на внутренней поверхности стенки обусловливают снижение температуры наружной поверхности приборов по сравнению с температурой теплоносителя. Из рис. 4.14 видно, что в средней по высоте части чугунного секционного радиатора температура поверхности отличается от температуры теплоносителя не менее чем на 7 — 8 С.

Зависимость сопротивления теплообмену на внутренней поверхности стенки /. в от расхода теплоносителя G и внутреннего диаметра трубы dB.

Термическое сопротивление стенки вместе с сопротивлением теплообмену на ее внутренней поверхности обусловливают снижение температуры наружной поверхности приборов по сравнению с температурой теплоносителя.

Однократно перекрестное движение сред в теплообменнике с перемешиванием одной из сред, движующейся в межтрубном пространстве ( показано штриховой линией.

Термическое сопротивление стенки — частное 5 / А.

Термическое сопротивление стенки можно уменьшить путем уменьшения толщины стенки и увеличения коэффициента теплопроводности материала; теплоотдача соприкосновением может быть интенсифицирована путем перемешивания жидкости и увеличения скорости движения; при тепловом излучении — путем повышения степени черноты и температуры излучающей поверхности.

Распределение температуры и плотности тепловых потоков вблизи стенки.| Средняя длина свободного пробега Л температура Сатерленда Tv, коэффициент теплопроводности Kg и коэффициент аккомодации у для различных газов при комнатной температуре.| Зависимость коэффициента теплоотдачи на стенке o w — — сс — — а для воздуха от давления для частиц разных диаметров.

Термическое сопротивление стенки прямо пропорционально перепаду температуры. Таким образом, в случае нестационарного переноса теплоты от стенки к плотноупакованному слою коэффициент теплопередачи ограничивается сопротивлением стенки, когда время стремится к нулю.

Термическое сопротивление стенки испарителя ( как и конденсатора) значительно увеличивается в результате всевозможных отложений на поверхности. Кроме того, наружная поверхность аппарата в целях защиты от коррозии имеет покрытие ( краской, суриком, антикоррозийным лаком и пр.

Термическое сопротивление стенки испарителя ( как и конденсатора) значительно увеличивается в результате всевозможных отложений на поверхности. Кроме того, наружная поверхность аппарата в целях защиты от коррозии имеет покрытие ( краской, суриком, антикоррозийным лаком и пр.

Термическое сопротивление стенок трубок ввиду его малости в формуле ( 147) не учитываем.

Что нужно знать о теплопроводности пенопласта

Способность материала к теплопередаче, проводить или задерживать тепловые потоки принято оценивать коэффициентом теплопроводности. Если посмотреть на его размерность – Вт/м∙С о , то становится понятным, что это величина удельная, то есть определенная для следующих условий:

  • Отсутствие влаги на поверхности плиты, то есть коэффициент теплопроводности пенопласта из справочника — это величина, определенная в идеально сухих условиях, которых в природе практически не существует, разве что в пустыне или в Антарктиде;
  • Значение коэффициента теплопроводности приведено к толщине пенопласта в 1 метр, что очень удобно для теории, но как-то не впечатляет для практических расчетов;
  • Результаты измерения теплопроводности и теплопередачи выполнены для нормальных условий при температуре 20 о С.

Согласно упрощенной методике, при расчетах термического сопротивления слоя пенопластового утеплителя нужно умножить толщину материала на коэффициент теплопроводности, затем умножить или разделить на несколько коэффициентов, используемых для того, чтобы учесть реальные условия работы теплоизоляции. Например, сильное обводнение материала, или наличие мостиков холода, или способ монтажа на стены здания.

Насколько теплопроводность пенопласта отличается от других материалов, можно увидеть в приведенной ниже сравнительной таблице.

На самом деле не все так просто. Для определения значения теплопроводности можно составить своими руками или использовать готовую программу для расчета параметров утепления. Для небольшого объекта обычно так и поступают. Частник или самозастройщик может вообще не интересоваться теплопроводностью стен, а уложить утепление из пенопластового материала с запасом в 50 мм, что будет вполне достаточно для самых суровых зим.

Большие строительные компании, выполняющие утепление стен на площади десятков тысяч квадратов, предпочитают поступать более прагматично. Выполненный расчет толщины утепления используется для составления сметы, а реальные значения теплопроводности получают на натурном объекте. Для этого наклеивают на участок стены несколько различных по толщине листов пенопласта и измеряют реальное термосопротивление утеплителя. В результате удается рассчитать оптимальную толщину пенопласта с точностью до нескольких миллиметров, вместо приблизительных 100 мм утеплителя можно уложить точное значение 80 мм и сэкономить немалую сумму средств.

Насколько выгодно использование пенопласта в сравнении с типовыми материалами, можно оценить из приведенной ниже диаграммы.

Что такое теплопроводность и термическое сопротивление

Теплопроводность металлов можно охарактеризовать так – это способность материалов (газ, жидкость и пр.) переносить излишнюю тепловую энергию от разогретых участков тела к холодным. Перенос осуществляется свободно движущимися элементарными частицами, в число которых входят атомы электроны и пр.

Сам процесс теплообмена происходит в любых телах, но способ переноса энергии во многом зависит от агрегатного состояния тела.

Кроме этого теплопроводности можно дать еще одно определение – это количественный параметр возможности тела проводить тепловую энергию. Если сравнивать тепловые и электрические сети, то это понятие аналогично электрической проводимости.

Тепловое сопротивление

Способность физического тела не допускать распространение теплового колебания молекул называют тепловым сопротивлением. Кстати, некоторые, искренне заблуждаются, путая это понятие с теплопроводностью.

Размеры платы и расположение в пространстве

Размеры, материал печатной платы и расположение ее в пространстве тоже влияют на величину теплового сопротивления светодиод — окружающая среда. Было проведено экспериментальное исследование для изучения этих параметров. Замерялась температура корпуса после работы светодиода в течение 30 минут. Данные исследований сведены в таблицах 4,5.

Таблица 4.
Плата из Al РСВ If (мА)
Размеры, мм 60x60x1.8 60x40x1.8 60x20x1.8 20x20x1.8
Объем (мм3) 6480 4320 2160 720
Площадь (мм2) 3600 2400 1200 400
LD-700AWN1-70 47 56 68 80 350
LD-700ABL1-E0 45 53 63 75 300
LD-700APG1-E0 46 54 63 76 300
LD-701CHR1-A5 44 52 61 74 450
LD-701CYL1-A5 45 52 62 75 450
Таблица 5.
Плата из двустороннего текстолита FR4 с 4 отверстиями If (мА)
Размеры, мм 60x60x1.8 60x40x1.8 60x20x1.8 20x20x1.8
Объем (мм3) 6480 4320 2160 720
Площадь (мм2) 3600 2400 1200 400
LD-700AWN1-70 74 75 79,8 81,7 350
LD-700ABL1-E0 63,4 68,1 72 76,5 300
LD-700APG1-E0 71,2 71,5 77,3 79,8 300
LD-701CHR1-A5 67,6 72,1 76,8 82,9 450
LD-701CYL1-A5 71,6 76,3 79,2 84,1 450

Рис. 8

Рис. 9

Рис. 10

Графики на рисунках 8 и 9 иллюстрирует таблицу 4 и 5, а график на рис. 10 иллюстрирует зависимость теплового сопротивления плат различного размера из фольгированного алюминия при разной ориентации в пространстве. При вертикальном размещении отвод тепла в условиях естественной конвекции будет лучше, чем при горизонтальном. Используя этот же график можно рассчитать необходимую площадь платы для достижения необходимого теплового сопротивления.

Приведем конкретный пример расчета теплового сопротивления печатной платы на открытом воздухе.

Таблица 6. Расчетные параметры
Та = температура окружающей среды (макс) 40°С Предположительно
Tj= температура р-n перехода 110°С      Рекомендуемые данные ИЗ технической документации
θ jс = тепловое сопротивление между р-п переходом и корпусом 15вС/Вт Согласно данным из технической документации
IF= Прямой ток 0,25А Значение при данном расчете
VF= Прямое напряжение 3.8 В. Согласно данным из технической документации
Количество светодиодов, шт. 1 или 4
θcb = тепловое сопротивление припоя между корпусом и печатной платой. 3°С/Вт Значение при данном расчете

Коэффициент теплопроводности материалов.

Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.

Материал Коэфф. тепл. Вт/(м2*К)
Алебастровые плиты 0,470
Алюминий 230,0
Асбест (шифер) 0,350
Асбест волокнистый 0,150
Асбестоцемент 1,760
Асбоцементные плиты 0,350
Асфальт 0,720
Асфальт в полах 0,800
Бакелит 0,230
Бетон на каменном щебне 1,300
Бетон на песке 0,700
Бетон пористый 1,400
Бетон сплошной 1,750
Бетон термоизоляционный 0,180
Битум 0,470
Бумага 0,140
Вата минеральная легкая 0,045
Вата минеральная тяжелая 0,055
Вата хлопковая 0,055
Вермикулитовые листы 0,100
Войлок шерстяной 0,045
Гипс строительный 0,350
Глинозем 2,330
Гравий (наполнитель) 0,930
Гранит, базальт 3,500
Грунт 10% воды 1,750
Грунт 20% воды 2,100
Грунт песчаный 1,160
Грунт сухой 0,400
Грунт утрамбованный 1,050
Гудрон 0,300
Древесина — доски 0,150
Древесина — фанера 0,150
Древесина твердых пород 0,200
Древесно-стружечная плита ДСП 0,200
Дюралюминий 160,0
Железобетон 1,700
Зола древесная 0,150
Известняк 1,700
Известь-песок раствор 0,870
Ипорка (вспененная смола) 0,038
Камень 1,400
Картон строительный многослойный 0,130
Каучук вспененный 0,030
Каучук натуральный 0,042
Каучук фторированный 0,055
Керамзитобетон 0,200
Кирпич кремнеземный 0,150
Кирпич пустотелый 0,440
Кирпич силикатный 0,810
Кирпич сплошной 0,670
Кирпич шлаковый 0,580
Кремнезистые плиты 0,070
Латунь 110,0
Лед 0°С 2,210
Лед -20°С 2,440
Липа, береза, клен, дуб (15% влажности) 0,150
Медь 380,0
Мипора 0,085
Опилки — засыпка 0,095
Опилки древесные сухие 0,065
ПВХ 0,190
Пенобетон 0,300
Пенопласт ПС-1 0,037
Пенопласт ПС-4 0,040
Пенопласт ПХВ-1 0,050
Пенопласт резопен ФРП 0,045
Пенополистирол ПС-Б 0,040
Пенополистирол ПС-БС 0,040
Пенополиуретановые листы 0,035
Пенополиуретановые панели 0,025
Пеностекло легкое 0,060
Пеностекло тяжелое 0,080
Пергамин 0,170
Перлит 0,050
Перлито-цементные плиты 0,080
Песок 0% влажности 0,330
Песок 10% влажности 0,970
Песок 20% влажности 1,330
Песчаник обожженный 1,500
Плитка облицовочная 1,050
Плитка термоизоляционная ПМТБ-2 0,036
Полистирол 0,082
Поролон 0,040
Портландцемент раствор 0,470
Пробковая плита 0,043
Пробковые листы легкие 0,035
Пробковые листы тяжелые 0,050
Резина 0,150
Рубероид 0,170
Сланец 2,100
Снег 1,500
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15% влажности) 0,150
Сосна смолистая (600…750 кг/куб.м, 15% влажности) 0,230
Сталь 52,0
Стекло 1,150
Стекловата 0,050
Стекловолокно 0,036
Стеклотекстолит 0,300
Стружки — набивка 0,120
Тефлон 0,250
Толь бумажный 0,230
Цементные плиты 1,920
Цемент-песок раствор 1,200
Чугун 56,0
Шлак гранулированный 0,150
Шлак котельный 0,290
Шлакобетон 0,600
Штукатурка сухая 0,210
Штукатурка цементная 0,900
Эбонит 0,160

1.3 Термическое сопротивление (сопротивление теплопередаче)

R,
м2·оС
/Вт,

важнейшее теплотехническое свойство
ограждения. Оно характеризуется разностью
температур внутренней и наружной
поверхности ограждения, через 1 м2
которого проходит 1 ватт тепловой энергии
(1 килокалория в час).

,
(2)

где
δ

толщина ограждения, м;

λ
— коэффициент теплопроводности, Вт/м·оС.

Чем
больше термическое сопротивление
ограждающей конструкции, тем лучше её
теплозащитные свойства. Из формулы (2)
видно, что для увеличения термического
сопротивления R
необходимо либо увеличить толщину
ограждения δ,
либо уменьшить коэффициент теплопроводности
λ,
то есть использовать более эффективные
материалы. Последнее более выгодно из
экономических соображений.

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающих конструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

Формула расчета теплового сопротивления

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.

  1. Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5 кирпича.
  2. Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.

    Рассчитывать придется все ограждающие конструкции

  3. Считаем толщину минеральной ваты. Ее коэффициент теплопроводности 0,045. Толщина слоя будет: 2,82*0,045 = 0,1269 м или 12,7 см. То есть, чтобы обеспечить требуемый уровень утепления, толщина слоя минеральной ваты должна быть не меньше 13 см.

Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными

Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание

Теплопроводность пенопласта от 50 мм до 150 мм считаем теплоизоляцию

Пенополистирольные плиты, именуемые в просторечье пенопласт – это изоляционный материал, как правило, белого цвета. Изготавливают его из полистирола термального вспучивания. На вид пенопласт представлен в виде небольших влагостойких гранул, в процессе плавления при высокой температуре выплавляется в одно целое, плиту. Размеры частей гранул считаются от 5 до 15 мм. Выдающаяся теплопроводность пенопласта толщиной 150 мм, достигается за счет уникальной структуры – гранул.

У каждой гранулы есть огромное количество тонкостенных микро ячеек, которые в свою очередь во много раз повышают площадь соприкосновения с воздухом. Можно с уверенность сказать, что пенопласт практически весь состоит из атмосферного воздуха, приблизительно на 98%, в свою очередь этот факт являет собой их предназначение – теплоизоляция зданий как снаружи, так и внутри.

Всем известно, еще из курсов физики, атмосферный воздух, является основным изолятором тепла во всех теплоизоляционных материалах, находится в обычном и разреженном состоянии, в толще материала. Тепло-сбережение, основное качество пенопласта.

Как было сказано раньше, пенопласт практически на 100% состоит из воздуха, а это в свою очередь определяет высокую способность пенопласта сохранять тепло. А связанно это с тем, что у воздуха самая низкая теплопроводность. Если посмотреть на цифры, то мы увидим, что теплопроводность пенопласта выражена в промежутке значений от 0,037Вт/мК до 0,043Вт/мК. Это можно сопоставить с теплопроводность воздуха — 0,027Вт/мК.

В то время как теплопроводность популярных материалов, таких как дерево (0,12Вт/мК), красный кирпич (0,7Вт/мК), керамзитная глина (0,12 Вт/мК) и других, используемых для строительства, намного выше.

Поэтому самым эффективным материалом из немногих для теплоизоляции наружных и внутренних стен здания принято считать пенопласт. Затраты на отопление и охлаждение жилых помещений значительно сокращаются благодаря применению пенопласта в строительстве.

Превосходные качества пенополистирольных плит нашли свое применение и в других видах защиты, например: пенопласт, так же служит для защиты от промерзания подземных и наружных коммуникаций, за счет чего их эксплуатационный срок увеличивается в разы. Пенопласт применяют и в промышленном оборудовании (холодильные машины, холодильные камеры) и в складских помещениях.

Вопросы тестов

1.Изотермические
поверхности, изображенные на рисунке

не могут пересекаться.

2.
Направление теплового потока на рисунке
обозначено
цифрой
2
,
так как теплота распространяется в
сторону убывания температур.

3.В
случае стационарного одномерного
температурного поля градиент температуры
равен

gradt
=
.

4.
Согласно закону Фурье вектор плотности
теплового потока, передаваемого
теплопроводностью

пропорционален градиенту температуры,
взятому с противоположным знаком.

5.Формула
закона Фурье имеет вид
q
= —
λ.

6.Закон
Фурье для стационарного одномерного
температурного поля имеет вид

.

7.Коэффициент
теплопроводности в законе Фурье
характеризует
способность
вещества проводить теплоту.

8.Коэффициент
теплопроводности в системе единиц СИ
измеряется в

Вт/(м К).

9.Наибольшим
коэффициентом теплопроводности обладают

чистые металлы.

9.Для
углеродистых сталей коэффициент
теплопроводности в Вт/(м·К) примерно
равен
50.

10.Основным
параметром, влияющим на коэффициент
теплопроводности, является
температура.

11.Дифференциальное
уравнение для нестационарного двухмерного
температурного поля имеет вид
.

12.Дифференциальное
уравнение теплопроводности для
нестационарного трехмерного температурного
поля записывается в виде
a
.

13.Коэффициент
температуропроводности вычисляется
по формуле
a
=
.

14.Физический
смысл коэффициента температуропроводности
состоит в том, что он характеризует

скорость изменения температуры в теле.

15.В
большинстве практических задач
приближенно предполагается, что
коэффициент теплопроводности
не
зависит

от температуры и
одинаков
по всей толщине стенки.

16.Если
δ
1
=
100 мм, λ
1
=
50 Вт/(м К), δ
2
=
100мм, λ
2
=
25 Вт/(м К)
,
то термическое сопротивление двухслойной
стенки, показанной на графике, в (м
2К)/Вт
 равно
0,006.

17.Еслиq=
1 кВт/м
2,
λ = 50 Вт/(м К), δ = 100мм,
t1
=
500
,
то для стенки, показанной на графике,
температураравна
___.

Решение:Так
как

=
(–)
то
=

18.Если
λ
= 1 Вт/(м К), δ = 100мм,
t1
=
500,
t2
=
400
,
то плотность теплового потока  в
Вт/м
2 твердого
тела, показанного на рисунке, равна
1000.

19.Еслиq
=
const,
λ
1
=
λ
2 ,
то температура
t3,

  для представленного на рисунке
случая равна

20.Если
λ
1
=
50 Вт/(м К), λ
2
=
30 Вт/(м К)
,
то плотность теплового потока
q
в кВт/м
2
равна
37,5.

21.Термическое
сопротивление трехслойной однородной
плоской стенки вычисляется по формуле
.

22.Задача
о распространении теплоты в цилиндрической
стенке при известных и постоянных
температурах на внутренней и наружных
поверхностях, если ее рассматривать в
цилиндрических координатах является

одномерной.

23.Тепловой
поток теплопроводностью через однородную
цилиндрическую стенку, изображенную
на рисунке, вычисляется по формуле
.

24.Если
длина трубы равна 1 м,

λ=50 Вт/мК,
ΔT=20
K,,
то тепловой поток
Q
равен
1000Вт.

25.Если
= 1 м
,
= 2, λ = 0,05 Вт/(м К),
 ,
то термическое сопротивление цилиндрической
стенки
равно
.

Решение:

26.График
распределения температуры по толщине
однородной однослойной цилиндрической
стенки на рисунке обозначен цифрой
2.

27.Задача
о распространении теплоты в сферической
стенке при известных и постоянных
температурах на внутренней и наружных
поверхностях, если ее рассматривать в
сферических координатах, является

одномерной.

Необходимые для расчета нормативные документы:

  • СНиП 23-02-2003 (СП 50.13330.2012). «Тепловая защита зданий». Актуализированная редакция от 2012 года.
  • СНиП 23-01-99* (СП 131.13330.2012). «Строительная климатология». Актуализированная редакция от 2012 года.
  • СП 23-101-2004. «Проектирование тепловой защиты зданий».
  • ГОСТ 30494-2011 «Здания жилые и общественные. Параметры микроклимата в помещениях».

Исходные данные для расчета:

  1. Определяем климатическую зону, в которой мы собираемся построить дом. Открываем СНиП 23-01-99*.»Строительная климатология», находим таблицу 1. В данной таблице находим свой город (или максимально близко расположенный от места строительства город), например, для строительства в деревне, расположенной возле г. Муром, мы возьмем показатели г. Мурома! из столбца 5 — «Температура воздуха наиболее холодной пятидневки, с обеспеченностью 0,92» — «-30°С»;
  2. Определяем продолжительность отопительного периода —  открываем таблицу 1 в СНиП 23-01-99* и в столбце 11 (со средней суточной температурой наружного воздуха 8°С) продолжительность равна zht = 214 сут;
  3. Определяем среднюю температуру наружного воздуха за отопительный период, для этого из той же таблицы 1 СНИП 23-01-99* выбираем в столбце 12 значение — tht = -4,0°С .
  4. Оптимальную температуру внутри помещения принимаем по таблице 1 в ГОСТ 30494-96 — tint= 20°С;

    Затем, нам необходимо определиться с конструктивом самой стены. Поскольку раньше строили дома из одного материала (кирпич, камень и т.п.) — стены были очень толстые и массивные. Но, с развитием технологий, у людей появились новые материалы, обладающие очень хорошими показателями теплопроводности, что позволило значительно сократить толщину стен из основного (несущего материала) добавлением теплоизолирующего слоя, таким образом появились многослойные стены.

    Основных слоев в многослойной стене минимум три:

  • 1 слой — несущая стена — её назначение передавать нагрузку от вышележащих конструкций на фундамент;
  • 2 слой — теплоизоляция — её назначение максимально задерживать тепло внутри дома;
  • 3 слой — декоративный и защитный — её назначение делать красивым фасад дома и одновременно защищать слой утеплителя от воздействия внешней среды (дождь, снег, ветер и т.п.);

Рассмотрим для нашего примера следующий состав стены:

  • 1 слой — несущую стену мы принимаем газобетонных блоков толщиной 400мм (принимаем конструктивно — с учетом того, что на неё будут опираться балки перекрытия);
  • 2 слой — выполняем из минераловатной плиты, её толщину мы и определим теплотехническим расчетом!
  • 3 слой — принимаем облицовочный силикатный кирпич, толщина слоя 120 мм;
  • 4 слой — поскольку изнутри наша стена будет покрыта слоем штукатурки из цементно-песчаного раствора, тоже включим её в расчет и назначим её толщину 20мм;
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector