Подключение трехфазного стабилизатора напряжения
Содержание:
- Как узнать свою схему
- Теория
- Как осуществляется работа генератора
- Электрический счетчик
- Измерение мощности ваттметром
- Чем трехфазное напряжение отличается от однофазного
- Устойчивость синхронной работы ДГУ
- Рассмотрим трехфазную систему питания
- Различия систем распределения электроэнергии
- Что такое линейное напряжение?
- Каково основное отличие этих напряжений
- Чем три фазы отличаются от одной?
- Соединение треугольником
- Что такое трехфазная сеть?
- Расчет линейного и фазного напряжения
- Схемы Звезда и Треугольник в трехфазной сети
- Какая стандартная потребляемая ее мощность
- Почему обычно три фазы, а не четыре
- Преимущество трёх фаз
- Соединение в треугольник трехфазного генератора или вторичной обмотки трансформатора.
- Какая сила тока трехфазной сети
Как узнать свою схему
Для правильного определения и расчета мощности требуется знание нескольких факторов:
- Количества фаз питания;
- Способа соединения потребителей.
При однофазном подключении используется два провода:
- Фазный провод;
- Нулевой провод.
Для трехфазной сети характерно наличие трех или четырех проводников (подключение с заземленной нейтралью). При этом используется две различных схемы включения:
- «Треугольник». Каждая нагрузка подсоединяется с двумя соседними. Напряжение каждой фазы подводится к точкам соединения потребителей.
- «Звезда». Все три потребителя соединяются в одной точке. Ко вторым концам подключаются фазы питания. Это схема с изолированной нейтралью. В схеме с заземленной нейтралью точка соединения потребителей подключается к нулевому проводнику.
Соединение источника и потребителей
Теория
На промышленных электростанциях генераторы вырабатывают трёхфазный ток, и повышают его напряжение до десятков и даже сотен киловольт. По линиям электропередач электричество поставляется потребителям. Но перед этим ток поступает на силовой трансформатор, который понижает напряжение до 380 В. Из распределительной подстанции электроэнергия поступает в потребительскую сеть.
В трёхфазной сети ток подаётся таким образом, что все три сдвинуты относительно друг друга на 120 градусов. Напряжение между фазами составляет 380 В, а между фазой и нейтралью 220 В (см.рис. 1). Именно это напряжение подаётся в каждую квартиру.
Рис. 1. Структура трёхфазного тока
Так как нашей целью является получение 380 В именно из однофазной сети, то перейдём к способам преобразования 220 В на 380.
Как осуществляется работа генератора
Устройство действует, превращая энергию вращения в энергию электричества. Электромашина, используя вращение МП, генерирует электрический ток. В тот момент, когда проволочная обмотка (катушка) крутится в МП, силовые линии магнитного поля пронизывают витки обмотки.
Внимание! В результате этого процесса электроны совершают перемещение в сторону плюсового полюса магнита. При этом ток движется, наоборот, в сторону отрицательного магнитного полюса
Не важно, что вращается при механическом воздействии, обмотка или магнитное поле, – ток будет течь, пока вращение выполняется. Генераторы, вырабатывающие трехфазное напряжение, могут иметь:
Генераторы, вырабатывающие трехфазное напряжение, могут иметь:
- неподвижные магниты и подвижный (вращающийся) якорь;
- неподвижный статор и магнитные полюса, которые вращаются.
В устройствах первой конструкции возникает потребность отбора большого тока при высоком напряжении. Для этого приходится использовать щётки (скользящие по контактным кольцам контакты).
Второе строение генератора проще и более востребовано. Здесь ротор – подвижный элемент, состоит из магнитных полюсов. Статор – неподвижная часть, собрана из пакета изолированных между собой листов железа и вложенной в пазы обмотки статора.
Информация. У ротора тело собрано из сплошного железа и имеет магнитные полюса в виде наконечников. Наконечники набираются из отдельных листов. Их форма подобрана с учётом того, чтобы генерируемый ток по форме был близок к синусоиде.
Полюсные сердечники имеют катушки возбуждения. На катушки подаётся постоянный ток. Подача осуществляется через графитовые щётки на кольца контакта, находящиеся на валу.
На схемах 3-х фазный генератор рисуют в виде трёх обмоток, угол между которыми равен 1200.
Существует несколько способов возбуждения генераторов, а именно:
- независимый – с помощью аккумулятора;
- от возбудителя – при помощи дополнительного генератора, закреплённого на одном валу;
- благодаря самовозбуждению – собственным выпрямленным током.
Сюда же относится магнитное возбуждение, подаваемое от магнитов постоянной природы.
Трёхфазный генератор переменного тока
Электрический счетчик
При любой схеме подключения необходим прибор учета расхода электроэнергии. 3-фазный счетчик может подключаться непосредственно к сети (прямое включение) или через трансформатор напряжения (полукосвенное), где показания прибора умножаются на коэффициент.
Важно соблюдать порядок подключения, где нечетные номера — это питание, а четные — нагрузка. Цвет проводов указывается в описании, а схема размещается на задней крышке прибора
Вход и соответствующий выход 3-фазного счетчика обозначаются одним цветом. Наиболее распространен порядок присоединения, когда сначала идут фазы, а последний провод — ноль.
3-фазный счетчик прямого включения для дома обычно рассчитан на мощность до 60 кВт.
Перед выбором многотарифной модели следует согласовать вопрос с энергоснабжающей компанией. Современные устройства с тарификаторами дают возможность подсчитывать плату за электроэнергию в зависимости от времени суток, регистрировать и записывать значения мощности во времени.
Температурные показатели приборов выбираются как можно шире. В среднем они составляют от -20 до +50 °С. Срок эксплуатации приборов достигает 40 лет с межповерочным интервалом 5-10 лет.
Счетчик подключается после вводного трех- или четырехполюсного автоматического выключателя.
Измерение мощности ваттметром
Мощность потребления трехфазного тока измеряют, используя ваттметры. Это может быть специальный ваттметр, для 3-х фазной сети, либо однофазный, включенный по определенной схеме. Современные приборы учета электроэнергии часто выполняются по цифровой схемотехнике. Такие конструкции отличаются высокой точностью измерений, большими возможностями оперирования с входными и выходными данными.
Варианты измерений:
- Соединение «звезда» с нулевым проводником и симметричная нагрузка – измерительный прибор подключается к одной из линий, считанные показания умножаются на три.
- Несимметричное потребление тока в соединении «звезда» – три ваттметра в цепи каждой фазы. Показания ваттметров суммируются;
- Любая нагрузка и соединение «треугольник» – два ваттметра, подключенных в цепь любых двух нагрузок. Показания ваттметров также суммируются.
На практике всегда стараются выполнить нагрузку симметричной. Это, во-первых, улучшает параметры сети, во-вторых, упрощает учет электрической энергии.
Чем трехфазное напряжение отличается от однофазного
Три фазы = линейное напряжение 380 Вольт, Одна фаза = фазное напряжение 220 Вольт
Статья адресована начинающим электрикам. Я тоже когда-то был начинающим, и всегда рад поделиться знаниями и поднять профессиональный уровень моих читателей.
Итак, почему в некоторые электрощитки приходит напряжение 380 В, а в некоторые – 220? Почему у одних потребителей напряжение трёхфазное, а у других – однофазное? Было время, я задавался этими вопросами и искал на них ответы. Сейчас расскажу популярно, без формул и диаграмм, которыми изобилуют учебники.
Очень коротко, для тех, кто не будет читать дальше: напряжение 380 В называется линейным и действует в трехфазной сети между любыми из трёх фаз. Напряжение 220 В называется фазным и действует между любой из трёх фаз и нейтралью (нулём).
Другими словами. Если к потребителю подходит одна фаза, то потребитель называется однофазным, и напряжение его питания будет 220 В (фазное). Если говорят о трехфазном напряжении, то всегда идёт речь о напряжении 380 В (линейное). Какая разница? Далее – подробнее.
Устойчивость синхронной работы ДГУ
Самое главное требование к работе дизель-генераторной электростанции — параллельная работа агрегатов должна быть устойчивой. Общая устойчивость складывается из двух составляющих:
- Статическая устойчивость. При небольших возмущениях в сети факторы, которые стремятся не допустить изменения синхронного режима, действуют сильнее, чем факторы, приводящие к возмущениям.
- Динамическая устойчивость. При значительных отклонениях параметров сети от синхронных (вызванных внешним влиянием) система стремится к прежнему, синхронному состоянию, после окончания действия внешних факторов.
Оба составляющих устойчивой работы очень важны для стабильной работы электростанции. Современные системы синхронизации обычно автоматически отслеживают случаи выпадения из синхронизма агрегатов, производят восстановление режима работы, а если, по каким-то причинам это невозможно, аварийный генератор отключается.
Рассмотрим трехфазную систему питания
Такие цепи, могут соединяться в звезду или в треугольник. Для удобства чтение схем и во избежание ошибок фазы принято обозначать U, V, W или А, В, С.
Схема соединения звезда:
Схема соединения фаз в звезду
Для соединения звездой суммарное напряжение в точке N равно нулю. Мощность трехфазного тока в данном случае тоже будет постоянной величиной, в отличии от однофазного. Это значит что трехфазная система уравновешена, в отличии от однофазной, то есть мощность трехфазной сети постоянна. Мгновенно значение полной трехфазной мощности будет равно:
В данном типе соединения присутствуют два вида напряжения – фазное и линейное. Фазное – это напряжение между фазой и нулевой точкой N:
Фазное напряжение в цепи
Линейное – между фазами:
Линейное напряжение
Поэтому полная мощность трехфазной сети для такого типа соединения будет равна:
Но поскольку линейное и фазное напряжение отличаются между собой в , но считается сумма фазовых мощностей. При расчете трехфазных цепей такого типа принято пользоваться формулой:
Или:
Соответственно для активной:
Для реактивной:
Различия систем распределения электроэнергии
Наибольшее распространение получила трехфазная система 380/220 В с заземленной нейтралью, однако встречаются другие способы распределения электроэнергии. Например, в ряде населенных пунктов можно найти трехфазную систему с незаземленной изолированной нейтралью и линейным напряжением 220 В.
В данном случае нулевой провод не требуется, а вероятность поражения электрическим током при нарушении изоляции снижается за счет незаземленной нейтрали. Трехфазные приемники подключаются к трем фазным проводам, а однофазные — на линейное напряжение между любой парой фазных проводов.
При обрыве нулевого провода в случае симметричной и несимметричной нагрузки линейные токи меняться соответственно:
· не будут и будут
Вопрос № 169
Нулевой провод, обладающий большим активным сопротивлением, обеспечить симметрию фазных напряжений при несимметричной нагрузке:
Вопрос № 170
К генератору, обмотки которого образуют звезду соединительных проводов подходит:
Вопрос № 171
Трехфазный двигатель, обмотки которого рассчитаны на 127 В, включают в сеть с линейным напряжением 380 В, при этом соединение его обмотки:
· двигатель нельзя включать в сеть
Вопрос № 172
Соединение обмоток двигателя включенного в сеть с линейным напряжением 220 В:
Вопрос № 173
Схема соединения ламп накаливания в сети с линейным напряжением 220 В и номинальным напряжением 220 В:
Вопрос № 174
При симметричной нагрузке соединенной звездой и линейным напряжением 220 В фазное напряжение составит в (В):
Вопрос № 175
В симметричной трехфазной цепи при Uф = 220 В, Iф = 5 А, угол сдвига фаз 30 градусов реактивная мощность Q, в (кВАр) составит:
Вопрос № 176
В симметричной трехфазной цепи при Uл = 220 В, Iл = 5 А, коэффициент мощности равен 0,8 активная мощность Р, в (кВт) составит:
Вопрос № 177
В трехфазной цепи Uл = 220 В, Iл = 2 А, Р = 380 Вт коэффициент мощности равен:
Вопрос № 178
Если в трехфазную сеть с линейным напряжением 220 В включен трехфазный двигатель, обмотки которого рассчитаны на 127 В, то схема соединения его обмоток:
Вопрос № 179
Если симметричная нагрузка соединена треугольником и линейное напряжение 380 В, то фазное напряжение в В:
Вопрос № 180
Если симметричная нагрузка соединена треугольником и линейный ток равен 2,2 А, то фазный ток:
Вопрос № 181
Схема соединения ламп накаливания разной мощности с номинальным напряжением 127 В включенных в трехфазную цепь с линейным напряжением 220 В:
· звезда с нулевым проводом
Вопрос № 182
Активная мощность Р, в (кВт), симметричной трехфазной цепи при Uф = 220 В, Iф = 5 А, коэффициенте мощности равном 0,8:
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Сдача сессии и защита диплома – страшная бессонница, которая потом кажется страшным сном. 8811 –
91.146.8.87 studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock! и обновите страницу (F5)очень нужно
Трехфазная цепь электрического питания зданий и промышленных объектов популярна в РФ, так как имеет преимущества — экономичность (по использованию материалов) и способность передачи большего количества электроэнергии по сравнению с однофазной цепью электроснабжения.
Трехфазное подключение дает возможность включения в работу генераторов и электродвигателей повышенной мощности, а также возможность работы с разными параметрами напряжения, это зависит от вида включения нагрузки в электрическую цепь. Для работы в трехфазной сети надо понимать соотношение ее элементов.
Что такое линейное напряжение?
В трехфазной магистрали можно выделить дополнительное напряжение, при подсоединении перемычку между 2 нагруженными кабелями. Значение его выше, т. к. является проекцией на плоскость координат 2 векторов, составляющих угол 120° между собой. Довесок к значению фазового напряжения составляет 73% или рассчитывается как √3-1. Общепринятое линейное напряжение в электролинии всегда составляет 380 вольт.
Напряжение вычисляется в промежутке фаз или между их выводами. При монтаже схемы появляются трудности, заключающиеся в неточности при расчете проводника, что иногда вызывает аварию. Схемы подключения различаются вариантами объединения нагруженных жил и источника электричества. Преимущества однофазной сети:
- безопасность эксплуатации оборудования, т. к. опасность в плане поражения исходит от 1 кабеля;
- схема применяется для осуществления эффективной разводки, выбора принципа эксплуатации, расчета параметров и выполнения измерений.
Расчеты в системе простые, выполняются с учетом стандартных физических формул. Для замеров показателей цепи используется мультиметр. Характеристики подключения к фазе определяются с помощью специальных вольтметров, токовых датчиков.
Линейное напряжение возникает при прохождении электрического тока в подводнике при объединении источника энергии и приемника. При понижении мощности на участке между выходом генератора и потребителем параметры фазного вольтажа также изменяются. Зная линейные показатели, нетрудно высчитать значение фазного напряжения.
Watch this video on YouTube
Особенности сети:
- при разводке проводов профессиональных устройств не требуется, достаточно отвертки с встроенным индикатором;
- при соединении проводов не используется ноль — из-за нейтральной жилы нет опасности поражения током;
- схема применима для постоянных сетей и линий с переменным током;
- однофазное соединение выполняется в трехфазной линии, но не наоборот.
Каково основное отличие этих напряжений
Если к такой сети подключить соответствующую нагрузку, например, трёхфазный электродвигатель, он будет давать механическую мощность, значительно большую, чем однофазный такого же размера и веса. Но подключить трёхфазную нагрузку можно двумя способами. Один, как уже было сказано — «звезда».
Если же начальные выводы всех трёх обмоток генератора или линейного трансформатора не соединять вместе, а подключить каждый из них к конечному выводу следующей, создав из обмоток последовательную цепочку, такое соединение называется «треугольником».
Особенность его в отсутствии нулевого провода, и для подключения к таким сетям нужно соответствующее трёхфазное оборудование, у которого нагрузки также соединены «треугольником».
При таком соединении в нагрузке действуют только линейные напряжения 380 В. Один пример: электродвигатель, включённый в трёхфазную сеть по схеме «звезда», при токе в обмотках 3,3 А будет развивать мощность 2190 Вт.
Тот же двигатель, включенный «треугольником», будет в корень из трёх раз мощнее — 5570 Вт за счёт увеличения тока до 10 А.
Получается, что, имея трёхфазную сеть и такой же электродвигатель, мы можем получить значительно больший выигрыш по мощности, чем при использовании однофазных, а просто изменив схему подключения, мы увеличим выходную мощность двигателя ещё втрое. Правда, его обмотки также должны быть рассчитаны на повышенный ток.
Таким образом, основное отличие между двумя видами напряжений в сетях переменного тока, как мы выяснили, — это величина линейного напряжения, которая в 3 раза больше фазного. За величину фазного напряжения принимается абсолютное значение разности потенциалов фазного провода и Земли. Линейное же напряжение — это относительная величина разности потенциалов между двумя фазными проводами.
Ну и в завершении статьи два видео о соединении звездой и треугольником, для тех кто хочет разобраться подробнее.
Чем три фазы отличаются от одной?
В обоих видах питания присутствует рабочий нулевой проводник (НОЛЬ). Про защитное заземление я подробно рассказал здесь, это обширная тема. По отношению к нулю на всех трёх фазах – напряжение 220 Вольт. А вот по отношению этих трёх фаз друг к другу – на них 380 Вольт.
Напряжения в трёхфазной системе
Так получается, потому что напряжения (при активной нагрузке , и ток) на трёх фазных проводах отличаются на треть цикла, т.е. на 120°.
Получается, что если у нас есть трехфазное напряжение, то у нас есть три фазных напряжения по 220 В. И однофазных потребителей (а таких – почти 100% в наших жилищах) можно подключать к любой фазе и нулю. Только делать это надо так, чтобы потребление по каждой фазе было примерно одинаковым, иначе возможен перекос фаз.
А защититься от перекоса фаз лучше всего с помощью реле напряжения, например Барьер или ФиФ ЕвроАвтоматика.
Кроме того, чрезмерно нагруженной фазе будет тяжело и обидно, что другие “отдыхают”)
Соединение треугольником
В этом случае конец предыдущей обмотки соединяется с началом последующей, образуя, тем самым треугольник. Линейные провода соединяются с вершинами треугольника – точками 1, 2, 3. При таком подключении фазное и линейное напряжения совпадают. В сравнении с подключением звездой, подключение треугольником снижает линейное напряжение примерно в 1,73 раза. Оно допускается лишь при условии одинаковой нагрузки фаз, иначе сила тока в обмотках может увеличиться, что представляет опасность для генератора.
Отдельные потребители (нагрузки), которые питаются от раздельных пар проводов, точно так же могут соединяться или звездой или треугольником. В итоге получается ситуация, аналогичная генератору: при соединении треугольником – нагрузки находятся под линейным напряжением, при соединении звездой – напряжение в 1,73 раза меньше.
Трехфазная система переменного тока
Трехфазные трансформаторы
Подключение трехфазного двигателя к трехфазной сети
Трехфазное УЗО
Схема подключения трехфазного электродвигателя
Трехфазный инвертор
Что такое трехфазная сеть?
Любой дом или квартира перед вводом в эксплуатацию подключается к местной электросети. Такая сеть может быть однофазной или трехфазной. При однофазном подключении к дому подводится два провода, фаза и ноль, между которыми напряжение 220 В. Трехфазная же сеть характеризуется наличием четырех проводов: трех фаз и ноля. Между каждой фазой и нолем напряжение 220 В, а между самими фазами 380 В (как показано на изображении).
Для учета электроэнергии в такой сети необходим трехфазный счетчик, который устанавливается местным РЭСом. Типичным примером такого счетчика является INCOTEX Меркурий 231 АМ-01, предназначенный для учета активной электроэнергии.
Расчет линейного и фазного напряжения
Сети с линейным током нашли широкое применение за счет своих характеристик меньшей травмоопасности и легкости разведения такой электропроводки. Все электрические устройства в этом случае соединены только с одним фазным проводом, по которому и идет ток, и только он один и представляет опасность, а второй – это земля.
Рассчитать такую систему несложно, можно руководствоваться обычными формулами из школьного курса физики. Кроме того, для измерения этого параметра сети, достаточно использовать обычный мультиметр, в то время как для снятия показаний подключения фазного типа, придется задействовать целую систему оборудования.
Для подсчета напряжения линейного тока, применяют формулу Кирхгофа:
Уравнение которой гласит, что каждой из частей электрической цепи, сила тока равна нулю – k=1.
И закон Ома:
Используя их, можно без труда произвести расчеты каждой характеристики конкретного клейма или электросети.
В случае разделения системы на несколько линий, может появиться необходимость рассчитать напряжение между фазой и нулем:
Эти значения являются переменными, и меняются при разных вариантах подключения. Поэтому, линейные характеристики идентичны фазовым.
Однако, в некоторых случаях, требуется вычислить чему равно соотношение фазы и линейного проводника.
Для этого, применяют формулу:
Uл – линейное, Uф – фазовое. Формула справедлива, только если – IL = IF.
При добавлении в электросистему дополнительных отводящих элементов, необходимо и персонально для них рассчитывать фазовое напряжение. В этом случае, значение Uф заменяется на цифровые данные самостоятельного клейма.
При подключении промышленных систем к электросети, может появиться необходимость в расчете значения реактивной трехфазной мощности, которое вычисляется по следующей формуле:
Идентичная структура формулы активной мощности:
Примеры расчета:
Например, катушки трехфазного источника тока подключены по схеме «звезда», их электродвижущая сила 220В. Необходимо вычислить линейное напряжение в схеме.
Линейные напряжения в этом подключении будут одинаковы и определяются как:
Трехфазная цепь электрического питания зданий и промышленных объектов популярна в РФ, так как имеет преимущества — экономичность (по использованию материалов) и способность передачи большего количества электроэнергии по сравнению с однофазной цепью электроснабжения.
Трехфазное подключение дает возможность включения в работу генераторов и электродвигателей повышенной мощности, а также возможность работы с разными параметрами напряжения, это зависит от вида включения нагрузки в электрическую цепь. Для работы в трехфазной сети надо понимать соотношение ее элементов.
Схемы Звезда и Треугольник в трехфазной сети
Существуют различные вариации включения нагрузки с рабочим напряжением 220 и 380 Вольт в трехфазную сеть. Эти схемы называются “Звезда” и “Треугольник”.
Когда нагрузка рассчитана на напряжение 220В, то она включается в трехфазную сеть по схеме “Звезда”, то есть к фазному напряжению. При этом все группы нагрузки распределяются так, чтобы мощности по фазам были примерно одинаковы. Нули всех групп соединены вместе и подключены к нейтральному проводу трехфазного ввода.
В “Звезду” подключены все наши квартиры и дома с однофазным вводом, другой пример – подключение ТЭНов в мощных калориферах и конвектоматах.
Когда нагрузка на напряжение 380В, то она включается по схеме “Треугольник”, то есть к линейному напряжению. Такое распределение по фазам наиболее типично для электродвигателей и другой нагрузки, где все три части нагрузки принадлежат к единому устройству.
Какая стандартная потребляемая ее мощность
Чтобы рассчитать электрическую мощность, потребляемую квартирой или частным домом, нужно учесть потребление энергии всеми используемыми электроприборами. Это удобно делать в два этапа:
- Рассмотреть все те приборы, которым необходимо питание, использующее три фазы.
- Просуммировать потребляемую мощность однофазных устройств.
Искомые значения можно взять либо из техпаспорта электроприбора, либо из технического справочника. При необходимости эту величину можно рассчитывать на основе сделанных измерений. В реальной жизни устройства практически никогда не включаются одновременно.
Обратите внимание! Знание предельной величины потребляемой энергии позволит правильно организовать электроснабжение дома или квартиры. На основе полученных данных можно, используя формулы мощности, вычислить, какова предельно допустимая сила тока в трехфазной сети, которую должна выдерживать электропроводка
Это позволит правильно подобрать предохранители и используемые во внутренней электросети провода
На основе полученных данных можно, используя формулы мощности, вычислить, какова предельно допустимая сила тока в трехфазной сети, которую должна выдерживать электропроводка. Это позволит правильно подобрать предохранители и используемые во внутренней электросети провода.
Принцип действия трехфазного генератора
Почему обычно три фазы, а не четыре
Таким вопросом задаются практически все начинающие электрики. По сути, количество фаз не ограничено. Их может быть 1, 2, 3, 4 и даже 10. Однако широкое применение получили трехфазные системы. Это связано с тем, что такой цепи достаточно для решения большинства задач.
Такие системы в большей степени используют для силовых установок на производстве. Вращение ротора составляет 360 градусов, а сдвиг по фазам составляет 120 градусов. Его вполне достаточно, чтобы раскрутить якорь до нужных оборотов и получить с двигателя нужную мощность. Увеличение количества фаз лишь повысит стоимость самой установки, поскольку потребует установки дополнительных катушек и подведения лишних кабелей.
Важно! Добавление фаз к существующим трем не повышает КПД агрегата, не увеличивает его мощность. С точки зрения рациональности, это лишь добавляет стоимость установок при сохранении прежних параметров работы
Преимущество трёх фаз
экспериментаторы в голос утверждают о преимуществе трёх фаз перед двумя, но требуется объяснение. Сразу лезут в голову мысли про КПД, вращающий момент и прочее. Но Тесла рисовал в блокнотике сотни конструкций, очевидно, сумел бы расставить полюса, чтобы добиться нужных параметров. Вывод – дело не в конструкции приборов.
Сейчас напряжение 380 В передаётся лишь по трём проводам. Этого нельзя было добиться в первоначальном варианте Николы Теслы. В 1883 году Эдисон массу сил потратил на попытки использовать трёхжильный провод. Очевидно, слышал о демонстрации, устроенной Николой Теслой, и понял опасность ситуации. В цивилизованном мире основную прибыль получает владелец патента, зачем известному изобретателю вытаскивать на свет способного инженера?
Логика Эдисона проста: пользователи увидят, что трёхжильные кабели более дешёвые, нежели четырёхжильные, и откажутся от использования новинок Николы Теслы. Несложно догадаться, что хитроумный план изобретателя цоколя для лампочек накала провалился. И с треском. А виной стал… Доливо-Добровольский. Система Николы Теслы для создания двух фаз требовала наличия четырёх проводов. Одновременно Доливо-Добровольский предлагал передать больше энергии посредством трёх.
Дело здесь в симметрии. Линейные напряжения 380 В в каждый момент оставляют альтернативу для выбора. К примеру, ток с первой фазы способен утечь на вторую или третью. В зависимости от присутствия подходящего потенциала. В результате получается баланс. Если объединить две фазы системы Николы Тесла, получится винегрет. Как следствие, нейтраль в системе Доливо-Добровольского допустимо убрать, если нагрузка симметричная – как часто происходит на практике.
Соединение в треугольник трехфазного генератора или вторичной обмотки трансформатора.
Соединим конец x обмотки ax с началом b обмотки by, конец y обмотки by с началом c обмотки cz, конец z обмотки cz с началом a обмотки ax так, как показано на рисунке 1. Такое соединение по виду напоминает треугольник, откуда и происходит его название. Линейные провода присоединены в вершинах треугольника.
Рисунок 1. Соединение в треугольник генератора.
Основные соотношения: 1. При соединении в треугольник линейные и фазные напряжения равны потому, что каждые два линейных провода (как видно из рисунка 1) присоединены к началу и концу одной из фазных обмоток, а все фазные обмотки одинаковы. 2. Линейные токи Iл больше фазных Iф в √3 = 1,73 раза.
Как доказать, что Iл = 1,73 × Iф? Воспользуемся для этого векторной диаграммой рисунка 2.
Рисунок 2. Определение линейных токов при соединении в треугольник.
Фазные токи Iab, Ibc, Ica в трех электроприемниках ЭП (рисунок 2, а) изображаются векторной диаграммой (рисунок 2, б), которая получена путем перенесения параллельно самим себе векторов с рисунка 2, а. Вершины треугольника нагрузок a, b и c являются узловыми точками. Поэтому согласно первому закону Кирхгофа справедливы равенства
Ia + Ica = Iab, откуда Ia = Iab – Ica; Ib + Iab = Ibc, откуда Ib = Ibc – Iab; Ic + Ibc = Ica, откуда Ic = Ica – Ibc.
Понятно, что эти равенства геометрические, поэтому вычитание нужно выполнять по правилам вычитания векторов, что и сделано на рисунке 2, б. Непосредственное измерение длин векторов или вычисления по правилам геометрии показывают, что линейные токи Ia, Ib и Ic больше фазных токов Iab, Ibc и Ica в √3 = 1,73 раза.
На рисунке 2, б также видно, что векторная диаграмма симметричных линейных токов Ia, Ib и Ic сдвинута на 30° в сторону, обратную вращению векторов, относительно диаграммы фазных токов Iab, Ibc и Ica. Иными словами, ток Ia отстает на 30° от тока Iab. Ток Ib отстает на 30° от тока Ibc, ток Ic отстает на 30° от тока Ica. Порядок индексов в обозначении фазных токов указывает на порядок вращения фаз. В нашем примере порядок следования (вращения) фаз: a, b, c.
На рисунке 2, в показано соединение в треугольник обмоток генератора или вторичных обмоток трансформатора. Векторы токов Iba, Iac, Icb, проходящих в обмотках генератора (вторичных обмотках трансформатора), и векторы токов в нагрузке (Iab, Ica, Ibc) соответственно параллельны, но повернуты на 180°. Причина такого расположения векторов станет ясна, если совместить рисунок 2, в с правой частью рисунка 2, а, что и выполнено на рисунке 2, г.
Обращается внимание на то, что все три обмотки внутри генератора (трансформатора) соединены последовательно и образуют замкнутую цепь. Подобное соединение в установках постоянного тока привело бы к короткому замыканию
В установках трехфазного тока в силу того, что электродвижущие силы (э. д. с.) сдвинуты по фазе на 120°, ток в этом замкнутом контуре отсутствует, так как в каждый момент сумма э. д. с. трех обмоток равна нулю 1.
Необходимо здесь же заметить, что для отсутствия тока в контуре обмоток генератора (трансформатора) необходимо, чтобы обмотки имели одинаковые числа витков, были сдвинуты на 120 электрических градусов и имели э. д. с. строго синусоидальные или во всяком случае не содержащие гармоник, кратных трем (смотрите статью «Понятие о магнитном равновесии трансформатора»).
Генераторы практически никогда не соединяют в треугольник. В трансформаторах такие соединения не только распространены, но иногда выполняются с целью получения внутри трансформатора токов третьих гармоник. Зачем? Понятно не затем, чтобы создавать в трансформаторе дополнительные потери. Причины здесь гораздо сложнее, смотрите статью «Понятие о магнитном равновесии трансформатора».
Соединение в треугольник обмоток трансформаторов в двух вариантах показано на рисунке 3. Подробно вопрос о соединениях обмоток трансформаторов рассмотрен в статье «Группы соединения трансформаторов».
Рисунок 3. Соединение в треугольник трансформаторов.
Какая сила тока трехфазной сети
На практике часто мощность электроприбора является известной величиной. Поскольку в большинстве случаев для питания используется напряжение 220 В, то имеются все необходимые данные для расчета силы тока. Эта величина важна, чтобы сравнить ее с предельно допустимой для используемых проводов, розеток и удлинителей.
Важно! Слишком сильный ток может вызвать перегорание предохранителей или порчу используемого удлинителя. Трехфазная система с нейтралью
Трехфазная система с нейтралью
Для определения силы тока можно воспользоваться формулой мощности: P = кв. корень(3) * U(l) * I(l) * cos(«фи«).
Здесь можно использовать известные данные:
- P — мощность электроприбора, известная из его инструкции по эксплуатации;
- U(l). В большинстве случаев речь идет о напряжении 220 В (для устройств с трехфазным питанием эта величина будет равна 380 В).
Значение и формула для cos («фи») обычно точно неизвестны. Их берут из технического паспорта прибора или обращаются за этой информацией к справочникам. Как правило, для определенных типов приборов такая величина известна. Например, она близка к 1 у нагревательных приборов, а у электродвигателей равна 0,7-0,9.
Таким образом на основе приведенной формулы можно посчитать силу тока на основании известных данных.
Прибор для измерения мощности — ваттметр