Электромагнитный пускатель 380в: устройство, правила подключения и рекомендации по выбору

Схема подключения двигателя через магнитный пускатель

Этой схеме подключения трехфазного двигателя надо уделить самое пристальное внимание. Она наиболее распространена во всем промышленном оборудовании, выпускавшемся примерно до 2000-х годов

А в новых китайских простеньких станках используется и по сей день.

Три фазы на двигатель идут в этой схеме не через автомат, а через пускатель. А включение/выключение пускателя осуществляется кнопками “Пуск” и “Стоп” , которые могут быть вынесены на пульт управления через 3 провода любой длины.

5. Схема подключения двигателя через пускатель с кнопками пуск стоп

Здесь питание цепи управления поступает с фазы L1 (провод 1) через нормально замкнутую (НЗ) кнопку “Стоп” (провод 2).

Если теперь нажать на кнопку “Пуск”, то цепь питания катушки электромагнитного пускателя КМ замкнется (провод 3), его контакты замкнутся, и три фазы поступят на двигатель. Но в таких схемах кроме трёх “силовых” контактов у пускателя есть ещё один дополнительный контакт. Его называют “блокировочным” или “контактом самоподхвата”.

Когда электромагнитный пускатель включается нажатием кнопки SB1 “Пуск”, замыкается и контакт самоподхвата. А если он замкнулся, то даже если кнопка “Пуск” будет отжата, цепь питания катушки пускателя всё равно останется замкнутой. И двигатель продолжит работать, пока не будет нажата кнопка “Стоп”.

Поскольку тема с магнитными пускателями очень обширная, она вынесена в отдельную статью Схемы подключения магнитного пускателя. Статья существенно расширена и дополнена. Там рассмотрено всё – подключение различных нагрузок, защита (тепловая и от кз), реверсивные схемы, управление от разных точек, и т.д. Нумерация схем сохранена. Рекомендую.

Схемы подключения

Начнем с того, что рассмотрим конструкцию трехфазного электродвигателя. Нас здесь будут интересовать три обмотки, которые и создают магнитное поле, вращающее ротор мотора. То есть, именно так и происходит преобразование электрической энергии в механическую.

Существует две схемы подключения:

Сразу же оговоримся, что подключение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной практически на 30%. В этом плане подключение треугольником выигрывает. Мощность подключенный таким образом мотор не теряет. Но тут есть один нюанс, который касается токовой нагрузке. Эта величина резко возрастает при пуске, что негативно влияет на обмотку. Высокая сила тока в медном проводе повышает тепловую энергию, которая влияет на изоляцию провода. Это может привести к пробивке изоляции и выходу из строя самого электродвигателя.

Хотелось бы обратить ваше внимание на тот факт, что большое количество европейского оборудования, завезенного на просторы России, укомплектовано европейскими электрическими двигателями, которые работают под напряжением 400/690 вольт. Кстати, снизу фото шильдика такого мотора

Так вот эти трехфазные электродвигатели надо подключать к отечественной сети 380В только по схеме треугольник. Если подключить европейский мотор звездой, то под нагрузкой он сразу же сгорит. Отечественные же трехфазные электродвигатели к трехфазной сети подключаются по схеме звезда. Иногда подключение производят треугольником, это делается для того, чтобы выжать из мотора максимальную мощность, необходимую для некоторых видов технологического оборудования.

Производители сегодня предлагают трехфазные электродвигатели, в коробке подключения которых сделаны выводы концов обмоток в количестве трех или шести штук. Если концов три, то это значит, что на заводе внутри мотора уже сделана схема подключения звезда. Если концов шесть, то трехфазный двигатель можно подключать к трехфазной сети и звездой, и треугольником. При использовании схемы звезда необходимо три конца начала обмоток соединить в одной скрутке. Три остальных (противоположных) подключить к фазам питающей трехфазной сети 380 вольт. При использовании схемы треугольник нужно все концы соединить между собой по порядку, то есть последовательно. Фазы подключаются к трем точкам соединения концов обмоток между собой. Внизу фото, где показаны два вида подключения трехфазного двигателя.

Схема звезда-треугольник

Такая схема подключения к трехфазной сети используется достаточно редко. Но она существует, поэтому есть смысл сказать о ней несколько слов. Для чего она используется? Весь смысл такого соединения основан на позиции, что при пуске электродвигателя используется схема звезда, то есть плавный пуск, а для основной работы используется треугольник, то есть выжимается максимум мощности агрегата.

Правда, такая схема достаточно сложная. При этом обязательно устанавливаются в соединение обмоток три магнитных пускателя. Первый соединяется с питающей сетью с одной стороны, а с другой стороны к нему подсоединяются концы обмоток. Ко второму и третьему подключаются противоположные концы обмоток. Ко второму пускателю производится подсоединение треугольником, к третьему звездой.

Внимание! Одновременно включать второй и третий пускатели нельзя. Произойдет короткое замыкание между подключенными к ним фазами, что приведет к сбрасыванию автомата

Поэтому между ними устанавливается блокировка. По сути, все будет происходить так – при включении одного, размыкаются контакты у другого.

Принцип работы таков: при включении первого пускателя временное реле включает и пускатель номер три, то есть, подключенного по схеме звезда. Происходит плавный пуск электродвигателя. Реле времени задет определенный промежуток, в течение которого мотор перейдет в обычный режим работы. После чего пускатель номер три отключается, а включается второй элемент, переводя на схему треугольник.

Особенности монтажа пускателя

Неправильный монтаж магнитного пускателя, может иметь последствия в виде ложных срабатываний. Чтобы избежать этого, нельзя выбирать участки, подверженные вибрации, ударам, толчкам.

Конструкционно МП устроен так, что его можно монтировать в электрощите, но с соблюдением правил. Устройство будет работать надежно, если местом его установки будет поверхность прямая, плоская и расположенная вертикально.

Тепловые реле не должны подвергаться подогреву от посторонних источников тепла, что отрицательно скажется на функционировании устройства. По этой причине их нельзя размещать в местах, подверженных нагреву.

Читать также: Как правильно точить кухонные ножи бруском вручную

Устанавливать магнитный пускатель в помещении, где смонтированы устройства с током от 150 А, категорически нельзя. Включение и выключение таких устройств провоцирует быстрый удар.

Чтобы не допустить перекоса пружинных шайб, находящихся в контактном зажиме пускателя, конец проводника загибают П-образно или в кольцо. Когда нужно подключить 2 проводника к зажиму, нужно чтобы их концы были прямыми и находились по две стороны зажимного винта.

Включению в работу пускателя должен предшествовать осмотр, проверка исправности всех элементов. Подвижные детали должны перемещаться от руки. Электрические соединения нужно сверить со схемой.

Схемы подключения магнитного пускателя с катушкой на 220 В

Перед тем, как перейдем к схемам, разберемся с чем и как можно подключать эти устройства. Чаще всего, требуются две кнопки — «пуск» и «стоп».  Они могут быть выполнены в отдельных корпусах, а может быть единый корпус. Это так называемый кнопочный пост.

Кнопки могут быть в одном корпусе или в разных

С отдельными кнопками все понятно — у них есть по два контакта. На один подается питание, со второго оно уходит. В посте есть две группы контактов — по два на каждую кнопку: два на пуск, два на стоп, каждая группа со своей стороны. Также обычно имеется клемма для подключения заземления. Тоже ничего сложного.

Подключение пускателя с катушкой 220 В к сети

Собственно, вариантов подключения контакторов много, опишем несколько. Схема подключения магнитного пускателя к однофазной сети более простая, потому начнем с нее — будет проще разобраться дальше.

Питание, в данном случае 220 В, полается на выводы катушки, которые обозначены А1 и А2. Оба эти контакта находятся в верхней части корпуса (смотрите фото).

Сюда можно подать питание для катушки

Если к этим контактам подключить шнур с вилкой (как на фото), устройство будет находится в работе после того, как вилку вставите в розетку. К силовым контактам L1, L2, L3 можно при этом подавать любое напряжение, а снимать его можно будет при срабатывании пускателя с контактов T1, T2 и T3 соответственно. Например, на входы L1 и L2 можно подать постоянное напряжение от аккумулятора, которое будет питать какое-то устройство, которое подключить надо будет к выходам T1 и T2.

Подключение контактора с катушкой на 220 В

При подключении однофазного питания к катушке неважно на какой вывод подавать ноль, а на какой — фазу. Можно провода перекинуть. Даже чаще всего на А2 подают фазу, так как для удобства этот контакт выведен еще на нижней стороне корпуса

И в некоторых случаях удобнее задействовать его, а «ноль» подключить к А1

Даже чаще всего на А2 подают фазу, так как для удобства этот контакт выведен еще на нижней стороне корпуса. И в некоторых случаях удобнее задействовать его, а «ноль» подключить к А1.

Но, как вы понимаете, такая схема подключения магнитного пускателя не особо удобна — можно и напрямую проводники от источника питания подать, встроив обычный рубильник. Но есть гораздо более интересные варианты. Например, подавать питание на катушку можно через реле времени или датчик освещенности, а к контактам подключить линию питания уличного освещения. В этом случае фаза заводится на контакт L1, а ноль можно взять, подключившись к соответствующему разъему выхода катушки (на фото выше это A2).

Схема с кнопками «пуск» и «стоп»

Магнитные пускатели чаще всего ставят для включения электродвигателя. Работать в таком режиме удобнее при наличии кнопок «пуск» и «стоп». Их последовательно включают в цепь подачи фазы на выход магнитной катушки. В этом случае схема выглядит как на рисунке ниже

Обратите внимание, что

Схема включения магнитного пускателя с кнопками

Но при таком способе включения пускатель будет в работе только то время, пока будет удерживаться кнопка «пуск», а это не то, что требуется для длительной работы двигателя. Потому в схему добавляют так называемую цепь самоподхвата. Ее реализуют при помощи вспомогательных контактов на пускателе NO 13 и NO 14, которые подключаются параллельно с пусковой кнопкой.

Схема подключения магнитного пускателя с катушкой на 220 В и цепью самоподхвата

В этом случае после возвращения кнопки ПУСК в исходное состояние, питание продолжает поступать через эти замкнутые контакты, так как магнит уже притянут. И питание поступает до тех пор, пока цепь не будет разорвана нажатием клавиши «стоп» или срабатыванием теплового реле, если такое есть в схеме.

Питание для двигателя или любой другой нагрузки  (фаза от 220 В) подается на любой из контактов, обозначенных буквой L, а снимается с расположенного под ним контакта с маркировкой T.

Подробно показано в какой последовательности лучше подключать провода в следующем видео. Вся разница в том, что использованы не две отдельные кнопки, а кнопочный пост или кнопочная станция. Вместо вольтметра можно будет подключить двигатель, насос, освещение, любой прибор, который работает от сети 220 В.

Особенности конструкции ЭМП

Конструкция электромагнитного пускателя (ЭМП) не отличается высокой сложностью исполнения. Но этот фактор никак не снижает надежности прибора.

Как устроен данный прибор?

Критерий надежности, по большей части, устанавливается правильным подключением цепей и точным выбором нагрузки.

Если эти критерии соблюдаются, прибор в большинстве случаев действует безупречно длительное время.

Классическое исполнение включает в себя следующие элементы:

  1. Корпус разборный из двух половин.
  2. Катушка индуктивности.
  3. Магнитопровод.
  4. Коммутирующее подвижное шасси.
  5. Группа контактов основных.
  6. Группа контактов вспомогательных.

Элементом магнитного пускателя, отвечающим за организацию коммутации силовой цепи, выступает подвижное шасси, объединенное с одной частью (подвижной) магнитопровода.

Само шасси выполнено из диэлектрического материала, а в качестве замыкающих контактов используются металлические (латунные) пластины. По концам пластин расположены контактные пятачки, выполненные из тугоплавких металлов, обычно это сплав серебра.

Неподвижная часть магнитопровода жёстко крепится внутри второй половины корпуса электромагнитного пускателя. На эту часть магнитопровода одевается катушка индуктивности и устанавливается пружина возврата.

Вторая часть корпуса прибора также наделяется контактами силовой и вспомогательной групп. Эти контакты закреплены на корпусе жестко при помощи винтов.

Устройство стандартного магнитного пускателя предполагает объединение двух половин корпуса, в результате чего объединяются также в единую конструкцию две половины Ш-образного магнитопровода.

При этом, за счёт пружины возврата, между половинами магнитопровода остается небольшой зазор, основные контактные группы в таком положении остаются разорванными.

Принцип действия ЭМП

Принцип действия прибора основан на эффекте электромагнитной индукции. Если на катушке, расположенной внутри пускателя, нет напряжения, магнитопровод остаётся в положении «с зазором», главные контакты разорваны.

Когда же через катушку пропускается электрический ток, под действием магнитного поля вторая (подвижная) часть магнитопровода преодолевает силу пружины и притягивается к первой (неподвижной) части.

Соответственно, главные контактные группы пускателя замыкаются пластинами подвижного шасси.

Обратный процесс очевиден – когда напряжение снимается с терминалов катушки индуктивности, магнитное поле прекращает действие, под силой пружины возврата подвижное шасси и вторая часть магнитопровода отталкиваются. Соответственно, магнитный пускатель возвращается в состояние разрыва контакта.

Следует отметить – исходя из конфигурации электроприбора, схема контактных групп может иметь самое разное строение. Особенно касательно вспомогательных контактов, которые могут находиться в замкнутом или разомкнутом состоянии в противовес состоянию главных контактов прибора.

Особенностью современных конструкций магнитных пускателей является модернизация схемы управления катушкой индуктивности.

Если исполнением прежних «устаревших» приборов предполагалась прямая подача напряжения на катушку, взятого от одной из фаз, теперь всё чаще используются электронные схемы.

Так, например, продукты известной компании «ABB» оснащаются электронной схемой стабилизации напряжения, подводимого к терминалу катушки индуктивности магнитного пускателя.

Управлению катушкой через электронную схему характерно то, что переменное напряжение предварительно выпрямляется и затем формируется импульсный сигнал. Такой подход обеспечивает увеличение срока службы и улучшение стабильности действия.

Схема подключения трехфазного двигателя в сеть через автоматический выключатель

Поэтому более подробно общий случай будет выглядеть так:

3. Подключение двигателя через автоматический выключатель. ПРАКТИЧЕСКАЯ СХЕМА

На схеме 3 показан защитный автомат, который защищает двигатель от перегрузки по току (“прямоугольный” изгиб питающих линий) и от короткого замыкания (“круглые” изгибы). Под защитным автоматом я подразумеваю обычный трехполюсный автомат с тепловой характеристикой нагрузки С или D.

Защитный автомат для включения электродвигателя. Ток 10А, через такой можно включать двигатель мощностью 4 кВт. Не больше и не меньше.

Схема 3 имеет право на жизнь (по бедности или незнанию местных электриков).

Если уж использовать такую схему, надо тщательно подобрать ток автомата, чтобы он был на 10-20% больше рабочего тока двигателя. И характеристику теплового расцепителя выбирать D, чтобы при тяжелом пуске автомат не срабатывал.

Например, движок 1,5 кВт. Прикидываем максимальный рабочий ток – 3А (реальный рабочий может быть меньше, надо измерять). Значит, трехполюсный автомат надо ставить на 3 или 4А, в зависимости от пускового тока.

Плюс этой схемы подключения двигателя – цена и простота исполнения и обслуживания. Например, там, где один двигатель, и его включают вручную на всю смену. Минусы такой схемы с включением через автомат –

  1. Невозможность регулировать тепловой ток срабатывания автомата. Для того, чтобы надежно защитить двигатель, ток отключения защитного автомата должен быть на 10-20% больше номинального рабочего тока двигателя. Ток двигателя надо периодически измерять клещами и при необходимости подстраивать ток срабатывания тепловой защиты. А возможности подстройки у обычного автомата нет(.
  2. Невозможность дистанционного и автоматического включения/выключения двигателя.

Эти недостатки можно устранить, в схемах ниже будет показано как.

Кнопка «Стоп».


Если температура на любой из этих фаз достигает критического значения, выполняется автоматическое отключение. Принцип схемы базируется на электромагнитной индукции используемой катушки с вспомогательными и рабочими контактами.

Включает контактор МП управляющий импульс, который исходит от пусковой кнопки после ее нажатия. При этом в описании подобных АВ-2М пишется, да и на самом пускателе с такого же выпрямителя, я видел надпись В 50Гц. Вы правильно думаете. Благодаря этой особенности они применяются в цепях с большей мощностью, чем пускатели.

При использовании катушки на 24 В или 12 В, питая от обычной АКБ при соблюдении соответствующих мер безопасности, получается даже запустить оборудование, рассчитанное на большие токи, например, с нагрузкой в В. Пускатель, это просто коммутационный аппарат, через который напряжение питания подается на обмотки электродвигателя. Но у двигателя, мы знаем, пусковой ток намного больше рабочего, а значит обычный бытовой автомат с током в 3А будет срабатывать сразу при пуске такого двигателя. Схема подключения двигателя с реверсным ходом Некоторые устройства работают с двигателями, которые способны вращаться в обоих направлениях.
Подключение электромагнитного пускателя с катушкой на 220 вольт

https://youtube.com/watch?v=Wo6HKMpJQ6Q

Схемы подключения магнитного пускателя.

Первая, классическая схема, предназначена для обычного пуска электродвигателя: кнопку «Пуск» нажали – двигатель включился, кнопку «Стоп» нажали – двигатель отключился. Причем вместо двигателя Вы можете подключать любую нагрузку, например, мощный ТЭН.

Для удобства понимания схема разделена на две части: силовая часть и цепи управления.

Силовая часть запитывается от трехфазного переменного напряжения 380В с фазами «А» «В» «С». В силовую часть входит: трехполюсный автоматический выключатель QF1, три пары силовых контактов магнитного пускателя 1L1-2T1, 3L2-4T2, 5L3-6T3 и трехфазный асинхронный эл. двигатель М.

Цепь управления получает питание от фазы «А». В схему цепи управления входят кнопка SB1 «Стоп», кнопка SB2 «Пуск», катушка магнитного пускателя КМ1 и его вспомогательный контакт 13НО-14НО, включенный параллельно кнопке «Пуск».

При включении автомата QF1 фазы «А», «В», «С» поступают на верхние контакты магнитного пускателя 1L1, 3L2, 5L3 и там дежурят. Фаза «А», питающая цепи управления, через кнопку «Стоп» приходит на контакт №3 кнопки «Пуск», вспомогательный контакт пускателя 13НО и так же остается дежурить на этих двух контактах. Схема готова к работе.

При нажатии на кнопку «Пуск» фаза «А» попадает на катушку пускателя КМ1, пускатель срабатывает и все его контакты замыкаются. Напряжение появляется на нижних силовых контактах 2Т1, 4Т2, 6Т3 и уже от них поступает на эл. двигатель. Двигатель начинает вращаться.

Вы можете отпустить кнопку «Пуск» и двигатель не отключится, так как с использованием вспомогательного контакта пускателя 13НО-14НО, подключенного параллельно кнопке «Пуск», реализован самоподхват.

Получается так, что после отпускания кнопки «Пуск» фаза продолжает поступать на катушку магнитного пускателя, но уже через свою пару 13НО-14НО. На нижнем рисунке стрелкой показано движение фазы «А».

А если не будет самоподхвата, придется все время держать нажатой кнопку «Пуск» пока будет работать эл. двигатель или любая другая нагрузка, питающаяся от магнитного пускателя.

Чтобы отключить эл. двигатель достаточно нажать кнопку «Стоп»: цепь разорвется, управляющее напряжение перестанет поступать на катушку пускателя, возвратная пружина вернет сердечник с силовыми контактами в исходное положение, силовые контакты разомкнутся и отключат двигатель от трехфазного питающего напряжения.

А теперь рассмотрим монтажную схему цепи управления пускателем. Здесь все практически так же, как и на принципиальной схеме, за небольшим исключением реализации самоподхвата.

Чтобы не тянуть лишний провод на кнопку «Пуск», ставится перемычка между выводом катушки и одним из ближних вспомогательных контактов: в данном случае это «А2» и «14НО». А уже с противоположного вспомогательного контакта провод тянется непосредственно на контакт №3 кнопки «Пуск».

Ну вот, мы с Вами и разобрали простую классическую схему подключения магнитного пускателя. Также на одном пускателе можно собрать схему автоматического ввода резерва (АВР), которая предназначена для обеспечения бесперебойного электроснабжения потребителей электроэнергией.

Ну а если остались вопросы или сомнения по работе пускателя, то посмотрите видеоролик, из которого Вы дополнительно подчерпнете нужную информацию.

Следующая схема будет немного сложнее этой, так как в ней будут задействованы два магнитных пускателя и три кнопки и называется эта схема реверсивной. При помощи такой схемы можно будет, например, вращать двигатель влево – вправо, поднимать и опускать лебедку.

{SOURCE}

Контакторы и пускатели — в чем разница

И контакторы и пускатели предназначены для замыкания/размыкания контактов в электрических цепях, обычно — силовых. Оба устройства собраны на основе электромагнита, работать могут в цепях постоянного и переменного тока разной мощности — от 10 В до 440 В постоянного тока и до 600 В переменного. Имеют:

  • некоторое количество рабочих (силовых) контактов, через которые подается напряжение на подключаемую нагрузку;
  • некоторое количество вспомогательных контактов — для организации сигнальных цепей.

Так в чем разница? Чем отличаются контакторы и пускатели. В первую очередь они отличаются степенью защиты. Контакторы имеют мощные дугогасительные камеры. Отсюда следуют два других отличия: из-за наличия дугогасителей контакторы имеют большой размер и вес, а также используются в цепях с большими токами. На малые токи — до 10 А — выпускают исключительно пускатели. Они, кстати, на большие токи не выпускаются.

Внешний вид не всегда так сильно отличается, но бывает и так

Есть еще одна конструктивная особенность: пускатели выпускаются в пластиковом корпусе, у них наружу выведены только контактные площадки. Контакторы, в большинстве случаев, корпуса не имеют, потому должны устанавливаться в защитных корпусах или боксах, которые защитят от случайного прикосновения к токоведущим частям, а также от дождя и пыли.

Кроме того, есть некоторое отличие в назначении. Пускатели предназначены для запуска асинхронных трехфазных двигателей. Потому они имеют три пары силовых контактов — для подключения трех фаз, и одну вспомогательную, через которую продолжает поступать питание для работы двигателя после того, как кнопка «пуск» отпущена. Но так как подобный алгоритм работы подходит для многих устройств, то подключают через них самые разнообразные устройства — цепи освещения, различные устройства и приборы.

Видимо потому что «начинка» и функции обоих устройств почти не отличаются, во многих прайсах пускатели называются «малогабаритными контакторами».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector