Параметры и расшифровка маркировки смд светодиодов

Цветовая температура

Данная характеристика выведена по аналогии цветовосприятия разогреваемого металла. Численные пределы размещены в рамках от 800 до 7500 и измеряются в Кельвинах (К). Наиболее низким показателем обладает красный свет – около 800 К, соответственно, наиболее высокий – у холодного синего.

Для освещения применяется белый свет. Цветные светодиоды в основном используются в декоративных и индикационных целях. Белый цвет по критериям цветовой температуры разделяется на три подкатегории:

  1. Теплый – 2700 – 3500 К.
  2. Нейтральный – 3500 – 5300 К (наиболее сбалансированный для восприятия).
  3. Холодный – 5300 – 7500 К.

Принцип работы.

Кристалл состоит из полупроводниковых материалов, которые расположены слоями. Свечение появляется после протекания электричества между границами их соприкосновения. В одном полупроводнике (n) преобладают электроны (отрицательные частицы), а в другом (p) –  ионы – дырки (положительные частицы). Полупроводниковые соединения способны пропускать электричество только  от p -слоя к n -слою, т.е. в одну сторону.

Схема появления излучения.

Под воздействием электричества электроны из n-слоя и дырки из р-слоя начинают двигаться к р-n-переходу. Происходит рекомбинация дырки и электрона — между р-n-границей протекает ток. Электроны переходят на низший энергетический уровень, с высоких орбиталей на более низкие. Освобождается энергия, которая  излучается в виде фотонов.

Описанный процесс протекает во всех полупроводниковых диодах. Но длина волны фотона не всегда находится в заметном человеческому глазу спектре. Для появления видимости необходимо движение элементарных частиц в определенном интервале: от 400 до 700 нм. Это достигается подбором определенных химических веществ. У каждого есть особая длина волны и цвет излучения.

Самые удачные материалы получаются из соединений типа AIIIBV и AIIBVI где II, III, V и VI – валентности элементов. Например, уже упоминавшийся арсенид галлия, фосфат индия или селенид цинка  и теллурид кадмия. Подобные соединения называют прямозонными. Возможно получение разнообразных  по свечению светодиодов: от ультрафиолетовых до инфракрасных.

К другой группе относятся непрямозонные полупроводники. Это карбид кремния, сам кремний, германий и другие. Диоды из них свет светят очень неярко. Впрочем, научные работы по использованию таких веществ продолжаются. Основные поиски решения ведутся в области технологий квантовых точек и фотонных кристаллов.

Кроме света при p-n-переходе освобождается еще и тепло. Для его отвода необходим теплоотвод (часто в этой роли выступает корпус изделия) или радиатор.

Особенности подключения RGB и COB светодиодов

Светодиоды с аббревиатурой RGB – это полихромные или многоцветные излучатели света разных цветов. Большинство из них собираются из трех светодиодных кристаллов, каждый из которых излучает свой цвет. Такая сборка называется цветовая триада.

Подключение RGB-светодиода производят так же, как и обычных светодиодов. В каждом корпусе такого многоцветного источника света располагаются по одному кристаллу: Red – красный, Green – зеленый и Blue – синий. Каждому светодиоду соответствует свое рабочее напряжение:

  • синему – от 2,5 до 3,7 В;
  • зеленому – от 2,2 до 3,5 В;
  • красному – от 1,6 до 2,03 В.

Кристаллы могут быть соединены между собой по-разному:

  • с общим катодом, т. е. три катода соединены между собой и с общим выводом на корпусе, а аноды – каждый имеет свой вывод;
  • с общим анодом – соответственно для всех анодов вывод общий, а катоды – индивидуальные;
  • независимая цоколевка – каждый анод и катод имеет собственный вывод.

Поэтому номиналы токоограничивающих резисторов будут разными.

Соединение кристаллов RGB-светодиода по схеме с общим катодом.

Соединение «с общим анодом».

В обоих случаях корпус диода имеет по 4 проволочных вывода, контактных площадок в SMD-светодиодах или штырька в корпусе «пиранья».

В случае с независимыми светодиодами выводов будет 6.

В корпусе SMD 5050 кристаллы-светодиоды располагают так:

В корпусе многоцветного 3 независимых кристалла зелёного, красного и синего цвета. Поэтому при расчёте номиналов резисторов помните – каждому цвету соответствует свое напряжение диода.

Подключение светодиодов типа COB

Аббревиатура COB – это первые буквы английского словосочетания chip-on-board. По-русски это будет – элемент или кристалл на плате.

Кристаллы клеят или паяют на теплопроводящую подложку из сапфира или кремния. После проверки правильности электрических соединений, кристаллы заливают желтым люминофором.

Светодиоды типа COB – это матричные конструкции, состоящие из десятков или сотен кристаллов, которые соединены группами с комбинированным включением полупроводниковых p-n-переходов. Группы – это последовательные цепочки светодиодов, количество которых соответствует напряжению питания светодиодной матрицы. Например, при 9 В это 3 кристалла, 12 В – 4.

Цепочки с последовательным включением соединяют параллельно. Таким образом набирают требуемую мощность матрицы. Кристаллы синего свечения заливают желтым люминофором. Он переизлучает синий свет в желтый, получая белый.

Качество света, т. е. цветопередачу регулируют в процессе производства составом люминофора. Одно- и двухкомпонентный люминофор дает невысокое качество, т. к. имеет в спектре 2-3 линии излучения. Трех- и пятикомпонентный – вполне приемлемую цветопередачу. Она может быть до 85-90 Ra и даже выше.

Подключение этого вида излучателей света не вызывает проблем. Их включают как обычный мощный светодиод, питаемый источником тока стандартного номинала. Например, 150, 300, 700 мА. Производитель СОВ-матриц рекомендует выбирать источники тока с запасом. Он поможет при запуске светильника с COB-матрицей в эксплуатацию.

Особенности лент SMD 5050

Светодиоды этой серии имеют размер 5х5 мм и световой поток, зависящий от цвета, который располагается в диапазоне от 2 до 8 люменов. Также их можно поделить по степени влагозащиты — IP20 и IP65, так как они имеют два разных вида покрытий, а именно — полиуретановое и силиконовое. Первые можно размещать только внутри помещения, а вторые, соответственно, подойдут уже и для улицы, так как им не страшна излишняя влажность.

Светодиоды 5050, характеристики и свойства которых помогают создать яркий свет, состоят из трех кристаллов с разными или одинаковыми диодами в одном корпусе. Разноцветные лампы получили название RGB (красный-зеленый-синий), после подключения контроллеров в них можно получить самые разные цвета.

Основными техническими характеристиками являются:

— прозрачное и жесткое полиуретановое покрытие;- качественная пайка;- число светодиодов на 1 метр составляет 60 штук; — кратность резки — 3 кристалла, которая составляет 50 мм;- ширина, длина, высота в мм 10 х 5000 х 3;- блок питания подключается к12V либо к 24V DC.

Маркировка светодиодов по цвету, правила расшифровки кода маркировки светодиодной ленты

С учетом этого параметра единой системы стандартов не существует. Маркировка светодиодов по цвету непосредственно на корпусе затруднена по причине миниатюрности изделий. Обозначения делают на лентах. Ниже приведена информация о продукции CREE.

Типовое название составлено следующим образом: АААВВВ-СК-0000-ZZZZZ. Первые три буквы («ААА») – это серия. Для рассмотренной выше модификации XM-L будут указано «XML». Следующие три позиции («BBB») – цвет:

  • GRN, BLU, RED и другие обозначения понятны в переводе с английского (зеленый, синий, красный соответственно).
  • WHT – белый цвет.
  • Однако BWT – тоже белый, но в этом варианте речь идет о приборах второго поколения.
  • HEW – еще одна модификация белого. Здесь отмечена особой аббревиатурой улучшенные энергетические характеристики прибора.

Далее на позициях «СК»указывают качество цветопередачи:

  • Для светильников наружного освещения этот параметр не является определяющим. Такие светодиоды маркируют «01».
  • Аббревиатурой L1 обозначают типовые изделия, характеристики которых определяются в технических паспортах.
  • При значениях коэффициента цветопередачи CRI от 70; 80; 85; 90 и выше применяют сочетания B1; H1; P1; U1 соответственно.

Таблица напряжения светодиодов

Чтобы светодиод обеспечивал при работе все характеристики, заданные его конструкцией и технологией изготовления, ему нужно обеспечить расчетное электропитание. Например, подать на его анод и катод напряжение, которое будет немного больше прямого напряжения p-n перехода. Избыток напряжения следует «погасить» на последовательно включенном резисторе. Резистор называется токоограничивающим. Он служит для того, чтобы не допустить превышения тока через p-n переход.

Таблица. Прямое напряжение p-n перехода светодиода цветного свечения.

Цвет свечения Напряжение рабочее, прямое, В
белый 3,5
красный 1,63–2,03
оранжевый 2,03–2,1
желтый 2,1–2,18
зеленый 1,9–4,0
синий 2,48–3,7
фиолетовый 2,76–4
инфракрасный до 1,9
ультрафиолетовый 3,1–4,4

Мощные светодиоды, их характеристики

Мощные светодиоды на основе COB-матриц. У крупных моделей в углах корпуса имеются отверстия для крепления. Модели небольших размеров крепятся пайкой на печатную плату.

В дополнение к обычным характеристикам светодиодов у мощных моделей добавляются несколько дополнительных характеристик:

  • номинальная мощность, Вт;
  • размер чипа, мм;
  • номинальный рабочий ток кристалла или матрицы;
  • срок службы, связанный со стандартами L 70, L80 и др.

Маломощные светодиоды

По величине потребляемой мощности – это светодиоды от 0,05 до 0,5 Вт, рабочий ток – 20-60 мА (средней мощности – 0,5-3 Вт, ток 0,1-0,7 А, большой – более 3 Вт, ток 1 А и более).

Конструктивно к маломощным светодиодам относятся несколько групп LED-излучателей света:

  • светодиоды в корпусах SMD обычные и сверхъяркие;
  • диоды типа DIP в цилиндрических корпусах – для монтажа в отверстия печатных плат;
  • в корпусах типа «пиранья» – для монтажа в отверстия.

Маломощные светодиоды в разных корпусах.

На картинке светодиоды сверху вниз:

  1. В цилиндрических корпусах типа DIP – с гибкими проволочными выводами для пайки в отверстия платы.
  2. В корпусах типа «пиранья», они же Superflux, пайка в отверстия.
  3. В корпусах с планарными выводами для монтажа на контактные площадки одно- и двухсторонних печатных плат или в «колодцы» многослойных плат.

Параллельное включение

Светодиод (СД, LED ) — микроэлемент, работа которого зависит от многих параметров. Погрешности в микротехнологиях приводят к тому, что вольт-амперная характеристика каждого отдельного СД отличается. Поэтому порог срабатывания («включения») всех диодов одновременно различен. Это допускается стандартами качества и это необходимо учитывать при построении электросхем. Параллельное соединение светодиодов требует именно такой настройки для их одновременного срабатывания.

Схема параллельного подключения

На электросхеме видно, что для каждого СД выбирается свой резистор. При настройке резисторы R1-R6 регулируют работу всей системы. Порог срабатывания каждого диода лежит в пределах 2,5-3,0 Вольт, поэтому резисторы необходимо подбирать под каждый диод.

Положительным показателем является низковольтная характеристика. Уровень срабатывания одного LED составляет до 3,0 В, поэтому можно рассчитать весь световой узел на низкое напряжение.

Это качество используется в мини-приборах, когда важна миниатюризация и они собраны на аккумуляторных «таблетках». Подобные поделки широко выпускаются промышленностью и предназначены для небольших задач — местной подсветки, в рекламных целях и т.д.

Преимущества и недостатки

Преимуществами параллельного подключения СД являются: низкое напряжение питания схемы, что дает возможность построения миниатюрных приборов; высокая «живучесть» системы, так как каждый диод подключен напрямую к источнику тока. Недостатками – необходимость настройки каждого СД, что ведет к увеличению числа элементов (резисторов); необходимость отдельного источника тока (или драйвера) при использовании электросетей общего назначения.

Сколько вольт имеет прямое напряжение светодиода


Вольт-амперная характеристика LED.

Если изучить стандартную вольт-амперную характеристику светодиода, можно заметить на ней несколько характерных точек:

  1. В точке 1 p-n переход начинает открываться. Через него начинает идти ток и LED начинает светиться.
  2. При увеличении напряжения ток достигает рабочего значения (в данном случае 20 мА), и в точке 2 напряжение является рабочим для данного LED, яркость свечения становится оптимальной.
  3. При дальнейшем увеличении напряжения ток растет, и в точке 3 достигает своего максимально допустимого значения. После этого он быстро выходит из строя, а кривая ВАХ растет только теоретически (штриховой участок).

Надо заметить, что после окончания перегиба и выхода на линейный участок ВАХ имеет большую крутизну, что ведет к двум последствиям:

  • при увеличении тока (например, при неисправности драйвера или отсутствии балластного резистора) напряжение растет слабо, поэтому можно говорить о постоянном падении напряжения на p-n переходе, независимо от рабочего тока (эффект стабилизации);
  • при небольшом увеличении напряжения ток растет быстро.

История

Олег Лосев, советский физик, обнаруживший электролюминесценцию в карбиде кремния

Первое известное сообщение об излучении света твёрдотельным диодом было сделано в 1907 году британским экспериментатором из . Раунд впервые открыл и описал электролюминесценцию, обнаруженную им при изучении прохождения тока в паре металл — карбид кремния (карборунд, SiC), и отметил жёлтое, зелёное и оранжевое свечение на катоде.

Эти эксперименты были позже, независимо от Раунда, повторены в 1923 году О. В. Лосевым, который, экспериментируя в Нижегородской радиолаборатории с выпрямляющим контактом из пары карборунд — стальная проволока, обнаружил в точке контакта двух разнородных материалов слабое свечение — электролюминесценцию полупроводникового перехода (в то время понятия «полупроводниковый переход» ещё не существовало). Это наблюдение было опубликовано, но тогда весомое значение этого наблюдения не было понято и потому не исследовалось в течение многих десятилетий.

Лосев показал, что электролюминесценция возникает вблизи спая материалов. Теоретического объяснения явлению тогда не было. Лосев вполне оценил практическую значимость своего открытия, позволявшего создавать малогабаритные твёрдотельные (безвакуумные) источники света с очень низким напряжением питания (менее 10 В) и очень высоким быстродействием. Им были получены два авторских свидетельства на «Световое реле» (первое заявлено в феврале г.)

В 1961 году Роберт Байард и Гари Питтман из компании Texas Instruments открыли и запатентовали технологию инфракрасного светодиода.

Первый в мире практически применимый светодиод, работающий в световом (красном) диапазоне, разработал Ник Холоньяк в Университете Иллинойса для компании General Electric в 1962 году. Холоньяк, таким образом, считается «отцом современного светодиода». Его бывший студент, Джордж Крафорд, изобрёл первый в мире жёлтый светодиод и улучшил яркость красных и красно-оранжевых светодиодов в 10 раз в 1972 году. В 1976 году Т. Пирсол создал первый в мире высокоэффективный светодиод высокой яркости для телекоммуникационных применений, специально адаптированный к передаче данных по волоконно-оптическим линиям связи.

Светодиоды оставались чрезвычайно дорогими вплоть до 1968 года (около $200 за штуку), их практическое применение было ограничено. Исследования Жака Панкова в лаборатории RCA привели к промышленному производству светодиодов; в 1971 году им был получен первый синий светодиод. Компания «Монсанто» была первой, организовавшей массовое производство светодиодов, работающих в диапазоне видимого света и применимых в индикаторах. Компании «Хьюллет-Паккард» удалось использовать светодиоды в своих ранних массовых карманных калькуляторах.

В начале 1990-х Исама Акасаки, работавший вместе с Хироси Амано в университете Нагоя, а также Сюдзи Накамура, работавший в то время исследователем в японской корпорации Nichia Chemical Industries, смогли изобрести дешевый синий светодиод (LED). За открытие дешевого синего светодиода им троим была присуждена Нобелевская премия по физике в 2014 г.. Синий светодиод, в сочетании с зеленым и красным, дает белый свет с высокой энергетической эффективностью, что позволило в дальнейшем создать, среди прочего, светодиодные лампы и экраны со светодиодной подсветкой. В 2003 году, компания Citizen Electronics первой в мире произвела светодиодный модуль по запатентованной технологии непосредственно вмонтировав кристалл от Nichia на алюминиевую подложку с помощью диэлектрического клея по технологии Chip-On-Board.

Виды светодиодов
Светодиод с пластиковой оболочкой-корпусом. Светодиодный фонарь (панель) для сценического направленного освещения. Современный люминофорный светодиод в ручном электрическом фонаре. Современные мощные сверхъяркие светодиоды на теплоотводящей пластине с контактами для монтажа.
Мощный белый светодиод 20Вт в сравнении с красным индикаторным 5 мм светодиодом.

Лазерные диоды

Лазерные устройства – это отдельный вид светодиодов, который не относиться ни к индикаторным, ни к осветительным. Да и технология его создания мало чем напоминает производство стандартных led-элементов.

По сути, это полупроводниковый лазер, который построен на базе светодиода. При включении они излучают очень узкий световой пучок. Современные устройства имеют угол рассеяния от 5 до 10°. В продаже имеются устройства, которые работают в видимом диапазоне, а также инфракрасные и ультрафиолетовые лазерные диоды.

Такие кристаллы устанавливают в лазерные указки, целеуказатели, приводы оптических дисков, оптические мыши и т. д.

Общее устройство и принцип работы SMD светодиодов

Главным преимуществом таких светодиодов является их максимально близкое расположение кристалла относительно теплоотвода

Этот фактор имеет важное значение при излучении мощного светового потока с выделением большого количества тепла. Мощность одного SMD светодиода находится в диапазоне 0,01-0,2 Вт, а на отдельную керамическую подложку может быть установлено от 1 до 3 кристаллов

Благодаря своей конструкции, контактные площадки подложки светодиодов непосредственно соединяются с монтажной платой. Широкий угол освещения и другие параметры позволяют изготавливать светодиодные лампы со стандартным цоколем. Данные светодиоды широко применяются в различных дисплеях и табло за счет небольших размеров корпуса. Они легко монтируются на платы, объединяются в ленты и линейки, удобные для последующего разделения и монтажа. Широкий ассортимент типоразмеров корпусов существенно расширяет сферу использования SMD светодиодов.
Для выращивания кристаллов применяется стандартная технология, представляющая собой металлоорганическую эпитаксию. Толщина каждого выращенного слоя постоянно измеряется и строго контролируется. В отдельные слои добавляются специальные примеси – акцепторы или доноры, обеспечивающие получение р-п-перехода, когда электроны концентрируются в п-области, а дырки – в р-области.

На определенном этапе протравливаются пленки, создаются контакты к слоям переходов, контактные выводы покрываются металлической пленкой. Такая пленка выращивается на общей подложке, после чего она разрезается на множество чипов, площадью 0,06-1,0 мм. В дальнейшем эти чипы используются для изготовления светодиодов.

Готовые кристаллы устанавливаются в специальные корпуса. Затем к ним подводятся контакты, а в конце на кристалл монтируется оптическое покрытие для отражения излучения или, наоборот, для просветления поверхности. Например, при изготовлении белого светодиода выполняется равномерное нанесение люминофора. На следующем этапе от корпуса с кристаллом отводится тепло, а затем он покрывается пластиковым куполом для фокусирования света под нужным углом. Изготовление светодиодов таким способом предполагает использование новых технологий, составляющих около половины стоимости всего источника света.

Существует специальная технология размещения SMD светодиодов на единую подложку. Сокращенно она называется СОВ, что означает chip-on-board или чип на плате. При использовании данной технологии на плате размещается сразу несколько кристаллов, у которых отсутствуют керамические подложки и корпуса. Установленные кристаллы в дальнейшем покрывает общий слой люминофора, что позволяет значительно улучшить характеристики и снизить общую стоимость всей матрицы.

Независимо от технологии изготовления, все SMD светодиоды монтируются на общей металлической подложке, нередко выполняющей охлаждающую функцию. Если же светодиодная сборка обладает повышенной мощностью, устраивается дополнительное охлаждение с использованием радиатора и вентилятора.

Таким образом, маломощные SMD светодиоды, установленные в большом количестве в светильник, позволяют получить качественный рассеянный свет не применяя для этого какие-либо специальные оптические системы. В этом случае устанавливается лишь защитное стекло, поглощающее только 8% светового потока.

Из чего состоит диод

В нашем мире встречаются вещества, которые отлично проводят электрический ток. Сюда в основном можно отнести металлы, например, серебро, медь, алюминий, золото и так далее. Такие вещества называют проводниками. Есть вещества, которые ну очень плохо проводят электрический ток – фарфор, пластмассы, стекло и так далее. Их называют диэлектриками или изоляторами. Между проводниками и диэлектриками находятся полупроводники. Это в основном германий и кремний.

После того, как германий или кремний смешивают с мельчайшей долей мышьяка или индия, образуется полупроводник N-типа, если смешать с мышьяком; или полупроводник P-типа, если смешать с индием.

Теперь если эти два полупроводника P и N -типа приварить вместе, на их стыке образуется PN-переход. Это и есть строение диода. То есть диод состоит из PN-перехода.

строение диода

Полупроводник P-типа в диоде является анодом, а полупроводник N-типа – катодом.

Давайе вскроем советский диод Д226 и посмотрим, что у него внутри, сточив часть корпуса на наждачном круге.

диод Д226

Вот это и есть тот самый PN-переход

PN-переход диода

Полярность

Подключение светодиодов необходимо производить в соответствии с полярностью. Это требование относится ко всем полупроводниковым приборам, и в раной степени затрагивает светодиодные устройства. Обычно анод и катод визуально отмечаются на корпусе прибора, но есть и другие способы определить их расположение:

  • мультиметром, переведенным в режим омметра. При
    неправильном присоединении щупов стрелку зашкалит, а если поменять их местами,
    будет отображено сопротивление элемента. Этот вариант подключения —
    правильный. У современных тестеров есть режим «проверка диодов», который делает
    проверку еще проще;
  • кратковременной подачей питания. Этот вариант
    допустим, если под рукой есть аккумулятор или батарейка с напряжением не больше
    4 В. Оптимальный вариант — устройство с плавным изменением напряжения
    (лабораторный трансформатор). Если при подаче номинального напряжения светодиод
    не загорелся, значит, подключение неправильное;
  • визуальным осмотром. Большинство элементов имеют
    на корпусе специальные отметки — плоские площадки, обозначающие катод,
    разная длина ножек (анод длиннее). На мощных светодиодах (1 ватт и выше)
    определить полярность проще всего — обычно она отмечена значками «+» и
    «-».

На какое рабочее напряжение рассчитана светодиодная лента

Стандартные полосы из SMD 3528 питаются
от источников на 12 В (60 и 120 чипов на метре) и 24 В (240 чипов на метре).
Для изделий из SMD 5050 требуется источник на 12 В (30 чипов на метре) или 24 В
– (60 и 120 чипов на метре).

При устройстве освещения желательно
сначала определить вид светодиодов и количество чипов на метре, так как на
выходе должно быть не только определенное напряжение, но и ток, соответствующий
показателям конкретной полосы.

Выбор блока питания облегчает таблица.
Например, для полосы из SMD 5050 длиной 10 м (на метре 60 чипов) требуется
14,4*10 = 144 Вт. Если умножить эту цифру на запас 20%, получится 172,8 Вт. Лучший
вариант блок на 24 В с мощностью 200 Вт.

Как устроен светодиод

Устройство светодиода достаточно простое. Кристалл с защитным корпусом располагается на подложке, излучающей тот или иной цвет. Для определенного свечения используют химический состав и люминофор.

У светодиода два контактных вывода – анод и катод, катод короче анода. Если длина одинаковая, то определить их можно пальчиковой батарейкой. Если появился свет, значит, перед вами анод.

Корпус заканчивается линзой. Рефлектор и линза образуют оптическую систему, формирующую угол потока. В нижней части корпуса можно увидеть алюминиевый или латунный поясок, выступающий в роли радиатора для отвода тепла, которое выделяется во время работы.

Из чего делают

Пластина подложки помещается в камеру, заполненную газообразными химическими веществами. Для пластины используют различные материалы, например, искусственный сапфир с подходящей кристаллической решеткой. Камеру нагревают, химические вещества оседают на пластине. Так образуется несколько слоев.

Нет идентичных светодиодов. Они, как отпечатки пальцев — у  каждого свои характеристики. Светодиоды распределяют по цветам.

Инструкция монтажа светодиодов

На производстве для монтажа используется групповая пайка. С помощью специального механизма светодиоды устанавливаются на плату, которая покрыта пастой. Следующий этап отправка в печь. Здесь паста под воздействием высокой температуры распадётся на 2 элемента: флюс и припой. После выполнения своих функций флюс испарится, а припой останется на дорожках платы и контактах, обеспечив качественное соединение элементов с подложкой.

Для установки светодиодов своими руками применяется паяльник. Здесь следует учесть следующие правила:

  • температура жала не должна превышать 300°;
  • перед началом работы определите полярность;
  • время контакта – не более 9 секунд, иначе может произойти перегрев кристалла, что негативно отразиться на характеристиках или спровоцирует перегорание;
  • в момент пайки температура корпуса не должна превышать 260°.

Результат правильно установленных на ленту светодиодов с помощью паяльника.

Если нет паяльника или навыков работы с ним, для монтажа можно использовать специальный строительный фен. Эта технология применяется на производстве с применением паяльной пасты.

Какие бывают светодиоды

Рассмотрим классификацию приборов LED в зависимости от их назначения, и технических характеристик.

Свойства и параметры индикаторных моделей

Индикаторные светодиоды могут иметь диаметр: 3, 5, 10 или 8 мм. Их напряжение варьируется от 2,5 до 5 Вольт. При этом они потребляют электрического тока от 10 до 25 миллиампер. Средняя яркость такого диода – всего от 100 до 1000 милликанделл. Данные приборы обладают круглыми или прямоугольными линзами.

Осветительные диоды

Активнее всего диоды применяются в освещении. Осветительные диоды изготавливаются, путем покрытия синего светодиода слоем люминофора. Светодиоды COB представляют собой подложку с расположенными на ней полупроводниками. Кристаллы при этом залиты люминофором нужных цветов. Плотность размещенных кристаллов обеспечивает повышенную яркость излучаемого света.

Обычно осветительным диодам требуется питание от 3 до 35 вольт. Они пропускают ток от 100 мА и до 2,5 А, а то и больше.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector