Способы определения площади земельного участка
Содержание:
- Как посчитать площадь комнаты: методика расчета по полу
- Для чего необходимо знать площадь комнаты и что потребуется для расчетов?
- [править] Обозначения
- Основание трапеции
- Нахождение площади четырёхугольника различными способами и методами
- Как найти площадь многоугольника
- Формулы площади треугольника
- Формулы для площадей четырехугольников
- Как рассчитать площадь комнаты – пошаговая инструкция
- Формулы для нахождения площади
- Формулы площади параллелограмма
- Методика выполнения работы
- Несколько советов
- Определения и соглашения
Как посчитать площадь комнаты: методика расчета по полу
Можно рассчитать площадь пола. Данная процедура состоит из таких этапов. Прежде всего, необходимо освободить стены помещения. Лучше проводить измерения в пустом помещении. Если помещение прямоугольное, то можно перемножить две стороны
В реальности стороны могут немного отличаться, поэтому так важно мерить все стороны. В некоторых случаях комната может быть не правильной конфигурации
В такой ситуации все пространство делится на отдельные прямоугольники. При этом можно нарисовать схему со всеми размерами. Затем считается площадь отдельных участков. Кстати, помещение не обязательно будет состоять только из прямоугольников. Оно может содержать треугольники и даже круги.
В таблице можно посмотреть соответствие площади на полу с показателями для стен при определенной высоте потолка
Если вы не знаете, как посчитать квадратные метры комнаты, то можно воспользоваться специальным калькулятором. При вычислении габаритов не обязательно соблюдать все размеры до сантиметра. Часто применяется округление значений. Иногда требуется учитывать разные углубления и выступы в стенах.
При расчетах важно учитывать и их предназначение. Если нужно узнать значения для монтажа теплого пола, то можно не учитывать пространство, занятое тяжелой мебелью
Есть варианты, когда в помещении используются разные уровни пола. В подобной ситуации также требуется поделить комнату на отдельные зоны. Не стоит осуществлять замеры по стене, так как она может иметь кривую поверхность.
Сложно определить площадь по полу, имеющего разнообразные выступы в виде волн или полукругов.
Полы сложной конфигурации требуют особой внимательности и использования специальных формул
Для чего необходимо знать площадь комнаты и что потребуется для расчетов?
В каких же случаях необходимо рассчитывать площадь комнаты?
Конечно, в первую очередь для определения количества расходных материалов для ремонта. Многие закупают их с запасом, а излишки возвращают в магазин. Однако в данном случае теряется много времени, к тому же не все магазины предоставляют такую услугу. Поэтому целесообразней правильно высчитать площадь всех поверхностей перед покупками.
Чтобы у вас не осталось много обрезков, правильно рассчитайте площадь стен, которые требуют оклейки
- Кроме того, зная площадь, проще распланировать свой бюджет. Ведь даже стоимость работ наемных работников в большинстве случаев зависит от того, сколько квадратных метров они должны обработать.
- Количество осветительных приборов также зависит от площади. Однако в большинстве случаев к сложным расчетам при выборе светильников не прибегают, данный вопрос обычно решается опытным путем.
Пример недостаточного освещения в ванной комнате
И последнее. Одна из главных величин в квартире – объем помещений (при этом необходимо площадь умножить на высоту), ведь в зависимости от него подбирают климатическое оборудование.
Мощность кондиционера в первую очередь зависит от объема помещения
Таким образом, существует огромное количество причин, по которым необходимо правильно высчитать площадь помещения. Но с чего же начать? Сначала нужно подготовить измеряемое помещение и инструменты.
Измерения желательно проводить в полностью освобожденном помещении. Если такой возможности нет, расчистите хотя бы участки около стен, ведь именно вдоль них будут проводиться замеры.
Обязательно отодвиньте всю крупную мебель от стен, которые вы будете измерять
Итак, для определения площади помещения необходимы следующие приспособления:
- Рулетка. Конечно, электронное приспособление удобней, но оно имеет большую погрешность. Кроме того, такой рулеткой не измерить сложные формы, при работе с выступающими элементами также могут возникнуть проблемы. Поэтому оптимальный набор – простая рулетка и линейка. Главное – проверить их точность, так как многие старые или детские приспособления имеют приличную погрешность.
- Карандаш.
- Листок бумаги для вычислений и записи результатов.
- Калькулятор.
Кроме того, вам может понадобиться длинная линейка для проверки ровности стен.
[править] Обозначения
Введём обозначения:
a — первая сторона;
b — вторая сторона;
c — третья сторона;
d — четвёртая сторона;
α — угол между сторонами a и b;
β — угол между сторонами b и c;
γ — угол между сторонами c и d;
η — угол между сторонами a и d;
d1 — диагональ, соединяющая вершины углов α и γ;
d2 — диагональ, соединяющая вершины углов β и η;
l1 — средняя линия, соединяющая середины сторон a и c;
l2 — средняя линия, соединяющая середины сторон b и d;
φ — угол (острый) между диагоналями;
ψ — угол (острый) между средними линиями;
p — полупериметр четырёхугольника;
SΔ — площадь треугольника;
Sчетыр — площадь четырёхугольника.
Основание трапеции
Рассмотрим, как правильно рассчитать площадь трапеции. Трапеция представляет собой четырехсторонний многоугольник с одной парой параллельных сторон. Если две непараллельные стороны имеют одинаковую длину, форма называется равнобедренной или обычной трапецией. Если непараллельные стороны имеют разную длину, она называется неравнобедренной. Однако, несмотря на эту дополнительную сложность в определении, площадь неправильной трапеции может быть рассчитана с помощью простой формулы.
Измерения для расчета площади трапеции:
- Выровнять прямой край транспортира вдоль более короткой из двух параллельных сторон.
- Использовать транспортир, чтобы провести линию перпендикулярно от основания трапеции вплоть до противоположной параллельной стороны.
- Измерить расстояние высоты с помощью линейки.
- Измерить длину более короткой параллельной стороны.
- Измерить длину более длинной параллельной стороны.
- Чтобы найти площадь трапеции, предварительно нужно вычислить среднюю величину двух ее параллельных сторон: (a+b)/2.
- Площадь равнобедренной (или любой) трапеции равна произведению средней длины основания и вершины на высоту.
- Площадь трапеции: S=1/2×h×(a + b).
Нужно обратить внимание, что высота трапеции всегда перпендикулярна основанию, точно так же, как высота параллелограмма. Пример: a=3 см, b=5 см, h=4 см
S=4х(3+5)/2=16.
Ответ: 16 см2.
Нахождение площади четырёхугольника различными способами и методами
Узнаем как найти площадь четырёхугольника когда даны его диагонали и образуемый при их пересечении острый угол. Тогда площадь четырёхугольника будет вычисляться по формуле: S = 1/2*d1*d2*sin(d1,d2).
Рассмотрим пример. Пусть d1 = 15 сантиметров, d2 = 12 сантиметров, и угол между ними 30 градусов. Определим S. S = 1/2*15*12*sin30 = 1/2*15*12*1/2 = 45 сантиметров квадратных.
Теперь пусть даны стороны и противолежащие углы четырёхугольника.
Пусть a, b, c, d известные стороны многоугольника; p — его полупериметр. Корень квадратный выражения условимся обозначать как rad (от латинского radical). Формула площади четырёхугольника будет находиться по формуле: S = rad(( p − a ) ( p − b ) ( p − c ) ( p − d ) − a b c d ⋅ c o s^2( (a,b) + (c,d))/2), где p = 1/2*(a + b + c + d).
На первый взгляд, формула кажется очень сложной и вычурной. Однако ничего сложного здесь нет, что мы и докажем, рассмотрев пример. Пусть данные нашего условия следующие: a = 18 миллиметров, b = 23 миллиметра, c = 22 миллиметра, d = 17 миллиметров. Противолежащие углы будут равны (a,b) = 0,5 градуса и (c,d) = 1,5 градуса. Для начала находим полупериметр: p = 1/2*(18 + 23 + 22 + 17) = 1/2*80 = 40 миллиметров.
Теперь найдём квадрат косинуса полусуммы противолежащих углов: c o s^2( (a,b) + (c,d))/2) = c o s^2(0,5 + 1,5)/2 = c o s1*c o s1 = (1/2)*(1/2) = 0,9996.
Подставим полученные данные в нашу формулу, получим: S = rad((40 — 18)*(40 — 23)*(40 — 22)*(40 — 17) — 18*23*22*17*0,97) = rad(22*17*18*23 — 18*23*22*17*1/4) = rad((22*17*18*23*(1 — 0,9996)) = rad(154836*0,0004) = rad62 = 7,875 миллиметра квадратного.
Разберёмся как находить площадь с помощью вписанной и описанной окружностей. При решении задач данной темы имеет смысл сопровождать свои действия вспомогательным рисунком, хотя это требование и не является обязательным.
Если есть вписанная окружность и нужно найти площадь четырёхугольника формула имеет вид:
S = ((a + b+ c + d)/2)*r
Снова возьмём на рассмотрение пример: a = 16 метров, b = 30 метров, c = 28 метров, d = 14 метров, r = 6 метров. Подставим аши значения в формулу, получим:
S = ((16 +30 + 28 + 14)/2)*6 = 44*6 = 264 метров квадратных.
Теперь займёмся вариантом когда окружность описана вокруг четырёхугольника. Здесь мы сможем воспользоваться следующей формулой:
S = rad((p − a )*( p − b )*( p − c )*( p − d ), где p равно половине длины периметра. Пускай в нашем случае стороны имеют следующие значения a = 26 дециметров, b = 35 дециметров, c = 39 дециметров, d = 30 дециметров.
Первым делом определим полупериметр, p = (26 + 35 + 39 + 30)/2 = 65 дециметров. Подставим найденное значение в нашу формулу. Получим:
S = rad((65 — 26)*(65 — 35)*(65 — 39)*(65 — 30)) = rad(39*30*26*35) = 1032 (округлённо) дециметров квадратных.
Как найти площадь многоугольника
Все, что имеет больше двух углов, является многоугольником, в том числе и треугольник. Рассмотрим, как найти площадь многоугольников.
1
Как найти площадь многоугольника – треугольник
- S = 1/2×h×b, где h – высота, а b – сторона.
- S = 1/2 a×b×sinα, где а и b – стороны треугольника, а sinα – синус угла между ними.
- S = √p×(p-a)×(p-b)×(p-c), где p – половина периметра, а, b, c – стороны. Если известны все стороны треугольника, то найти площадь можно именно по этой формуле.
- S = r×p, где r – радиус вписанной окружности, а p – половина периметра. Если в треугольник вписана окружность, то для нахождения площади можно использовать эту формулу.
- S = abc/4R, где a, b, c – стороны треугольника, а R – радиус описанной окружности. Если треугольник вписан в окружность, для нахождения площади треугольника можно использовать эту формулу.
Прямоугольный треугольник
- S = 1/2×ab, где a и b – катеты прямоугольного треугольника.
- S = d×e, где d и e отрезки гипотенузы, образованные при касании вписанной окружности об гипотенузу.
- S = (p-a)×(p-b), где p – половина периметра, а и b – катеты.
Равнобедренный треугольник
- S = 1/2×a²×sina, где а – бедро треугольника, sina же – угол между бедрами.
- S = b²/4tgα/2, где b – основание треугольника, а tgα – угол между бедрами.
Равносторонний треугольник
- S = √3×a²/4, где а – сторона треугольника (любая, так как в равностороннем треугольнике все стороны равны).
- S = 3√3×R²/4, где R – радиус окружности, в которую вписан треугольник.
- S = 3√3×r², где r – радиус окружности, которая вписана в треугольник.
- S = h²/√3, где h – высота равностороннего треугольника.
2
Как найти площадь многоугольника – квадрат
- S = a², а – сторона квадрата. Так как все стороны квадрата равны, достаточно умножить одну его сторону на другую.
- S = d²/2, где d – диагональ квадрата.
3
Как найти площадь многоугольника – прямоугольник
- S = a×b, где a и b – стороны прямоугольника. Так как противолежащие стороны в прямоугольнике равны, достаточно умножить одну его сторону (длину) на не противолежащую, перпендикулярную сторону (ширину).
- S = a²+b²=c², где a – ширина, b – длина, а c – диагональ. Диагональ делит прямоугольник на два прямоугольных треугольника и если в условии задачи дана одна сторона прямоугольника и его диагональ, несложно будет найти и третью сторону, использую теорему Пифагора. После того как мы найдем эту сторону, ищем площадь по стандартной формуле a×b. Пример: Ширина прямоугольника – 3см, диагональ – 5 см. Найти площадь. Пишем 3² + x² = 5². x² = 16 => x = 4. S = a×b = 3×4=12. Ответ: S прямоугольника = 12см²
4
Как найти площадь многоугольника – трапеция
- S = (a+b)×h/2, где a – маленькое, b – большое основание трапеции, h – высота.
- S = h×m, где h – высота, m – средняя линия трапеции, равная половине суммы оснований – 1/2×(a+b).
- S = 1/2×d1×d2×sinα, где d1 и d2 – диагонали трапеции, а sinα – синус угла между ними.
- S = a+b/2×√c²-((b-a)²+c²-d²/2(b-a))², где a и b – основания трапеции, c и d – остальные две стороны.
S = 4r²/sinα, где r – радиус вписанной окружности, а sinα – синус угла между стороной и основанием.
5
Площадь правильного многоугольника
- S = r×p = 1/2×r×n×a, где r – радиус вписанной окружности, p – половина периметра. Для того чтобы найти площадь любого правильного многоугольника, нужно разбить его на равные треугольники с общей вершиной в центре вписанной окружности.
- S = n×a²/4tg(360°/2n), где n – число сторон правильного многоугольника, а – длина стороны.Также вычислить площадь правильного многоугольника поможет данный онлайн сервис. Просто вставьте нужное значение и получите ответ.
6
Площадь неправильного многоугольника
Площадь неправильного многоугольника можно найти с помощью координат его вершин. Если в условии задачи даны вышеупомянутые координаты, то выполняем следующее:
- Составляем таблицу указывая букву, обозначающую вершину и соответствующие координаты (x; y).
- Умножаем значение x одной вершины на значение y второй и так далее.
- Складываем все значение, получаем какое-то число.
Составляем точно такую таблицу, по такому же принципу умножаем y координату одной вершины на x координату второй, складываем получившиеся значения.
От суммы значений первой таблицы отнимаем сумму значений второй таблицы.
Полученное число делим на 2 и тем самым находим площадь неправильного многоугольника.
Первая полоса
Беременность
Как не набрать лишний вес во время беременности
Формулы площади треугольника
-
Формула площади треугольника по стороне и высотеПлощадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты
S = 1 2 -
Формула площади треугольника по трем сторонам
S = √()()()
-
Формула площади треугольника по двум сторонам и углу между ними
Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.S = 1 2 -
Формула площади треугольника по трем сторонам и радиусу описанной окружности
S = 4R -
Формула площади треугольника по трем сторонам и радиусу вписанной окружностиПлощадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.
S = · где S — площадь треугольника, — длины сторон треугольника, — высота треугольника, — угол между сторонами и , — радиус вписанной окружности,
R — радиус описанной окружности,= + + — полупериметр треугольника. 2
Формулы для площадей четырехугольников
Четырехугольник | Рисунок | Формула площади | Обозначения |
S = ab |
a и b – смежные стороны |
||
d – диагональ,φ – любой из четырёх углов между |
|||
S = 2R2 sin φ Получается из верхней формулы подстановкой d=2R |
R – радиус ,φ – любой из четырёх углов между |
||
S = a ha |
a – сторона,ha – , опущенная на эту сторону |
||
S = absin φ |
a и b – смежные стороны,φ – угол между ними |
||
d1, d2 – , φ – любой из четырёх углов между ними |
|||
S = a2 |
a – сторона квадрата |
||
S = 4r2 |
r – радиус |
||
d – квадрата |
|||
S = 2R2 Получается из верхней формулы подстановкой d = 2R |
R – радиус |
||
S = a ha |
a – сторона,ha – , опущенная на эту сторону |
||
S = a2 sin φ |
a – сторона,φ – любой из четырёх углов ромба |
||
d1, d2 – |
|||
S = 2ar |
a – сторона,r – радиус |
||
r – радиус ,φ – любой из четырёх углов ромба |
|||
a и b – основания,h – |
|||
S = m h |
m – ,h – |
||
d1, d2 – , φ – любой из четырёх углов между ними |
|||
a и b – основания,c и d – боковые стороны |
|||
S = ab sin φ |
a и b – неравные стороны,φ – угол между ними |
||
a и b – неравные стороны,φ1 – угол между сторонами, равными a ,φ2 – угол между сторонами, равными b. |
|||
S = (a + b) r |
a и b – неравные стороны,r – радиус |
||
d1, d2 – |
|||
Произвольный выпуклый четырёхугольник |
d1, d2 – , φ – любой из четырёх углов между ними |
||
, |
a, b, c, d – длины сторон четырёхугольника,p – , Формулу называют «Формула Брахмагупты» |
S = ab гдеa и b – смежные стороны |
|
гдеd – диагональ,φ – любой из четырёх углов между |
|
S = 2R2 sin φ гдеR – радиус ,φ – любой из четырёх углов между Формула получается из верхней формулы подстановкой d = 2R |
|
S = a ha гдеa – сторона,ha – , опущенная на эту сторону |
|
S = absin φ гдеa и b – смежные стороны,φ – угол между ними |
|
гдеd1, d2 – , φ – любой из четырёх углов между ними |
|
S = a2
гдеa – сторона квадрата |
|
S = 4r2
гдеr – радиус |
|
гдеd – квадрата |
|
S = 2R2 гдеR – радиус Получается из верхней формулы подстановкой d = 2R |
|
S = a ha гдеa – сторона,ha – , опущенная на эту сторону |
|
S = a2 sin φ гдеa – сторона,φ – любой из четырёх углов ромба |
|
гдеd1, d2 – |
|
S = 2ar гдеa – сторона,r – радиус |
|
гдеr – радиус ,φ – любой из четырёх углов ромба |
|
гдеa и b – основания,h – |
|
S = m h гдеm – ,h – |
|
гдеd1, d2 – , φ – любой из четырёх углов между ними |
|
гдеa и b – основания,c и d – боковые стороны |
|
S = ab sin φ гдеa и b – неравные стороны,φ – угол между ними |
|
гдеa и b – неравные стороны,φ1 – угол между сторонами, равными a ,φ2 – угол между сторонами, равными b. |
|
S = (a + b) r гдеa и b – неравные стороны,r – радиус |
|
гдеd1, d2 – |
|
Произвольный выпуклый четырёхугольник | |
гдеd1, d2 – , φ – любой из четырёх углов между ними |
|
, гдеa, b, c, d – длины сторон четырёхугольника,p – Формулу называют «Формула Брахмагупты» |
S = ab гдеa и b – смежные стороны |
гдеd – диагональ,φ – любой из четырёх углов между |
S = 2R2 sin φ гдеR – радиус ,φ – любой из четырёх углов между Формула получается из верхней формулы подстановкой d = 2R |
S = a ha гдеa – сторона,ha – , опущенная на эту сторону |
S = absin φ гдеa и b – смежные стороны,φ – угол между ними |
гдеd1, d2 – , φ – любой из четырёх углов между ними |
S = a2 гдеa – сторона квадрата |
S = 4r2 гдеr – радиус |
гдеd – квадрата |
S = 2R2 гдеR – радиус Получается из верхней формулы подстановкой d = 2R |
S = a ha гдеa – сторона,ha – , опущенная на эту сторону |
S = a2 sin φ гдеa – сторона,φ – любой из четырёх углов ромба |
гдеd1, d2 – |
S = 2ar гдеa – сторона,r – радиус |
гдеr – радиус ,φ – любой из четырёх углов ромба |
гдеa и b – основания,h – |
S = m h гдеm – ,h – |
гдеd1, d2 – , φ – любой из четырёх углов между ними |
гдеa и b – основания,c и d – боковые стороны, |
S = ab sin φ гдеa и b – неравные стороны,φ – угол между ними |
гдеa и b – неравные стороны,φ1 – угол между сторонами, равными a ,φ2 – угол между сторонами, равными b. |
S = (a + b) r гдеa и b – неравные стороны,r – радиус |
гдеd1, d2 – |
Произвольный выпуклый четырёхугольник |
гдеd1, d2 – , φ – любой из четырёх углов между ними |
гдеa, b, c, d – длины сторон четырёхугольника,p – Формулу называют «Формула Брахмагупты» |
Как рассчитать площадь комнаты – пошаговая инструкция
При расчете площади нужно знать длину, ширину и высоту комнаты
Можно, конечно, заглянуть в техническую документацию дома и посмотреть в ней все нужные характеристики. Но, во-первых, там нередко бывают ошибки, во-вторых, иногда проще вычислить всё самостоятельно, чем найти документы.
Для проведения подсчётов нам понадобятся определённые инструменты, большинство из которых можно запросто найти в каждом доме. А именно:
- рулетка;
- карандаш;
- бумага для записей;
- калькулятор (можно использовать калькулятор, который размещён на нашем сайте);
- трезвость ума и ясность мыслей.
Пол
Чтобы высчитать квадратуру пола в прямоугольной или квадратной комнате, необходимо узнать её длину и ширину.
Проводить замеры лучше у основания стен, а для этого желательно отодвинуть или вынести всю мебель. Но, если такая процедура в ваши планы не входила, можно мерить и по центру. Главное при этом, чтобы воображаемая линия, по которой будет производиться измерение, располагалась под углом в 90° к стене.
После того как данные замеров получены и проверены, их нужно перемножить по формуле , где S — площадь в квадратных метрах, a и b — длина и ширина, соответственно.
Если к основному помещению прилегает ниша или какое-нибудь другое — его площадь необходимо вычислить по тому же алгоритму, и результаты приплюсовать к площади комнаты. Если есть различные выступы, которые занимают его часть — их также следует измерить и полученный результат вычесть из общего.
С квадратами и прямоугольниками всё просто. А как посчитать S комнаты, если она имеет неправильную форму? Здесь придётся применить логическое мышление, и немного вспомнить школьный курс алгебры и геометрии. Но давайте по порядку.
Если помещение неправильной формы
Постарайтесь мысленно или на бумаге разделить комнату на простые элементы (квадраты, прямоугольники, треугольники). Далее, нужно будет высчитать размеры каждого из них, и результаты сложить.
- для треугольника — . Где a — длинна основания треугольника, b — высота, проведённая от вершины к основанию;
- для круга — . Где 3,14, r — радиус круга (чтобы узнать радиус — найдите с помощью рулетки самое длинное расстояние между стенами и разделите его на 2);
- для полукруга — (буквенные обозначения совпадают с предыдущим пунктом).
Как оказалось, и в таком случае ничего сложного нет. Главное, тщательно проверять результаты замеров, чтобы в расчёты не закралась случайная ошибка, и их не пришлось производить заново.
И ещё. Если вы хотите произвести монтаж тёплого пола, не забудьте отдельно вычислить площадь, которую занимает мебель, и вычтите её из общего значения для помещения.
С полом мы разобрались. Но при подготовке, допустим, к переклеиванию обоев это вам мало чем поможет. Нужно будет узнать точное количество квадратных метров, которое занимают стены.
Стены
Площадь каждой отдельно взятой стены можно высчитать так же, как и квадратуру пола. Только теперь вместо ширины помещения нужно будет измерить её высоту. Множим длину стены на высоту и получаем необходимый нам результат в квадратных метрах.
Измерение высоты лазерной рулеткой
А можно вычислить и для всех стен сразу. Для этого вам понадобится узнать периметр пространства. Возьмите рулетку и измерьте длину каждой стены, результаты сложите — это и будет периметр. Остаётся измерить высоту комнаты и воспользоваться следующей формулой: , где p — периметр, а h — высота.
Теперь необходимо разобраться с оконными, дверными и прочими проёмами, присутствующими в помещении.
Точнее, рассчитать площадь каждого из них (по формулам, представленным выше, в зависимости от формы проёма), результаты суммировать и вычесть из общего количества.
Существует также ряд общих рекомендаций по проведению замеров.
Формулы для нахождения площади
Через две стороны
Площадь прямоугольника через две стороны можно вычислить по формуле:
\(S=ab\)
где a, b — соседние стороны прямоугольника.
Через диагонали и синус угла между ними
Для того, чтобы найти площадь прямоугольника через диагонали и синус угла, нужно воспользоваться формулой:
\(S=\frac{d^2\sin\alpha}2\)
где \(d \) — диагональ, \(\alpha\) — угол между диагоналями (острый).
Через любую сторону и диагональ
Чтобы определить площадь прямоугольника через любую сторону и диагональ, нужно воспользоваться формулой:
\(S=a\sqrt{d^2-a^2}=b\sqrt{d^2-b^2}\)
где a, b — соседние стороны прямоугольника, d — диагональ.
Через сторону и диаметр описанной окружности
Чтобы узнать площадь прямоугольника через сторону и диаметр описанной окружности, нужно воспользоваться формулой:
\(S=a\sqrt{D^2-a^2}=b\sqrt{D^2-b^2}\)
где a, b — соседние стороны прямоугольника, D — диаметр описанной окружности.
Через сторону и радиус описанной окружности
Вычисление площади прямоугольника через сторону и радиус описанной окружности происходит по формуле:
\(S=a\sqrt{4R^2-a^2}=b\sqrt{4R^2-b^2}\)
где a, b — соседние стороны прямоугольника, R — радиус описанной окружности.
Через сторону и периметр
Чтобы посчитать площадь прямоугольника через сторону и периметр, нужно воспользоваться формулой:
\(S=\frac{Pa-2a^2}2=\frac{Pb-2b^2}2\)
где a, b — соседние стороны прямоугольника, Р — периметр.
Через радиус описанной окружности и синус угла между диагоналями
Способ нахождения площади прямоугольника через радиус окружности и синус угла между диагоналями происходит по формуле:
\(S=\frac{4R^2\sin\alpha}2\)
Формулы площади параллелограмма
-
Формула площади параллелограмма по длине стороны и высотеПлощадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону высоты.S =
-
Формула площади параллелограмма по двум сторонам и углу между нимиПлощадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.S =
-
Формула площади параллелограмма по двум диагоналям и углу между нимиПлощадь параллелограмма равна половине произведения длин его диагоналей умноженному на синус угла между ними.
S = 1 12 2 где S — Площадь параллелограмма, — длины сторон параллелограмма, — длина высоты параллелограмма,1, 2 — длины диагоналей параллелограмма, — угол между сторонами параллелограмма, — угол между диагоналями параллелограмма.
Методика выполнения работы
Перед тем, как рассчитать квадратуру дома, нужно подготовить следующее:
- Калькулятор для проведения вычислений.
- Рулетка для проведения измерений. При этом надо учитывать, что некоторые производят измерения в дюймах – они не подойдут. Нужна рулетка, которая указывает длину с помощью сантиметров.
- Потребуется план квартиры. Измерение площади стен, пола и потолка будет выполняться на его основе. Если такую схему найти нельзя, то её нужно нарисовать от руки, стремясь реалистично отобразить размеры и геометрическую форму частей.
- Также потребуется бумага и карандаш для ведения записей в процессе работы.
При замерах полов, стен и потолков в первую очередь потребуются знания из школьной геометрии. Простейшим способом, как рассчитать площадь дома в квадратных метрах, является вычисление прямоугольных поверхностей. Площадь прямоугольника вычисляется как произведение его сторон.
Вычисление площади простейших геометрических фигур основано на базовых формулах из геометрииИсточник stroychik.ru
При этом важно учитывать следующее.
Хотя на вид комната состоит из прямоугольных деталей, на самом деле это может оказаться немного по-другому. Например, ширина стен, измеренная с одной и другой стороны, может отличаться на несколько сантиметров. Эта проблема особенно существенна при измерении расстояний в домах старой постройки. В таких случаях обычно измеряют длину в нескольких местах, а при вычислении площади используют среднее значение.
Вычисления позволяют получить нужные цифры с высокой точностью
Однако будет разумной предосторожностью при вычислениях добавить к площади небольшую величину. Это позволит исключить ситуацию, в которой стройматериалов чуть-чуть не хватило.
Таким способом можно вычислить площадь прямоугольных пустых стен, пола и потолка.
Сложная форма стен и потолка может быть разделена на простые фигуры для упрощения вычисленийИсточник www.buvbaze.lv
Расчёт площади стен с окнами и дверьми
Если на стене есть окно или дверь, то вычисление производится следующим образом:
- Определяется площадь стены без учёта двери или окна.
- Вычисляется площадь каждого окна или двери путём умножения их длины на ширину.
- Из площади стены вычитают площадь окон и дверей.
Этот способ применим в тех случаях, когда рассматриваются прямоугольные стены.
Площадь стены, имеющей неправильную форму
В этом случае нужно разделить вычисления на этапы. Стена с нишами может иметь сложную форму. Однако её всегда можно условно разбить на несколько участков, каждый из которых соответствует одной из простых форм. Затем надо рассчитать площади каждой из частей и сложить их.
Как посчитать площадь стен, рассказано в видео
Расчёт через периметр
Если комната имеет неправильную форму, то площадь стен можно вычислить, измерив длину периметра. В этом случае проводят измерение горизонтальных отрезков по каждой из сторон помещения и складывают их вместе, затем определяют высоту. Произведение этих величин равно площади стен в этом помещении.
Несколько советов
- Нужно при проведении расчётов все цифры наносить на план. Таким образом сохранится не только результат, но и промежуточные вычисления, которые могут пригодится при проведении ремонтных работ в будущем.
- При вычислении площади нужно учитывать, что не всегда необходима полная величина. Например, обои могут клеить не только на всю стену, а на их часть. Класть плитку могут до потолка либо только до определённой высоты. Поэтому нужно точно определить, как высчитать квадратуру дома с учётом конкретного плана ремонта.
Как сделать замеры – можно посмотреть в видеоролике:
Для того, чтобы точно знать, сколько необходимо стройматериалов для проведения работ, нужно учитывать площади стен, пола и потолка, а также нормы расхода стройматериалов. Среднюю величину расхода можно узнать, спросив у продавцов, а квадратуру дома необходимо измерить самостоятельно. Для этого нужно воспользоваться знаниями из элементарной геометрии. При вычислении площади сложных фигурных поверхностей их разбивают на простые части, делают необходимые вычисления, затем суммируют их.
Определения и соглашения
В приведённой ниже таблице будут указаны определения и договорённости, которые будут использоваться в дальнейшем во время наших рассуждений.
- Четырёхугольник — это фигура из четырёх точек (вершин), из которых любые три не лежат на одной прямой, и четырёх отрезков (сторон) последовательно их соединяющих.
- Диагональ — отрезок, соединяющий вершины многоугольника не лежащие на одной стороне (её обозначение – латинская буква d).
- Площадь фигуры — это численное значение территории, заключённой внутри многоугольника (её обозначение – латинская буква S).
- Синус угла — это число равное отношению противоположного катета к гипотенузе в прямоугольном треугольнике. (её обозначение – запись sin).
- Косинус угла — это число равное отношению прилежащего катета к гипотенузе в прямоугольном треугольнике. В дальнейшем в статье для его обозначения будем использовать латинскую запись cos.
- Описанная окружность — это окружность, которой принадлежат все вершины многоугольника ( её радиуса обозается буквой R).
- Вписанная окружность — это окружность, которая касается всех сторон многоугольника. В дальнейшем в статье для обозначения её радиуса будем использовать латинскую букву r.
- Угол между сторонами a и b будем обозначать следующей записью (a,b).