Тепловая мощность: 8 ответов на вопросы по расчету значений для помещений и отопительных приборов

Все про стены

На теплоотдачу помещения напрямую влияет ряд характеристик, связанных со стенами. Первую их них предлагается учесть в коэффициенте A — число стен в комнате. Это важный показатель, потому что тепловых потерь будет тем больше, чем больше в помещении внешних стен. Существенную роль играют и углы, которые крайне уязвимы с точки зрения сохранения тепла.

Какими должны быть значения коэффициента? Если помещение внутреннее и внешних стен нет, то А будет равен 0,8. Если имеется одна внешняя стена, показатель составит 1,0; если таких стен две, то 1,2; если три, то 1,4.

Важно также учесть расположение внешних стен с учетом сторон света. Этот показатель скрыт под буквой B

Не секрет, что стороны дома, расположенные на южной стороне, сохраняют тепло лучше, чем стены с северной стороны. Солнечная энергия оказывает влияние на температуру внутри объекта даже в холодное время года, так что этот показатель следует учесть.

Каким должны быть значения коэффициента B?

Внешние стены расположены:

  • на западной/южной стороне — 1,0;
  • на северной/восточной стороне — 1,1

При расчетах следует учесть также показатель утепленности внешних стен здания. Предусмотрим его под буквой C. От этих данных напрямую зависит суммарной значение теплопотерь объекта. Самыми проблемными с этой точки зрения считаются стены. Значит, показатель теплоотдачи на 100% зависит от того, насколько они «защищены».

Каким будет показатель С?

Для внешних стен, не имеющих утепления — 1,27.

Для стен со средней степенью утепления — 1,0.

Для стен с высоко качественным утеплением, рассчитанном технически — 0,85.

Что такое тепловой расчет?

Если говорить просто, тепловой расчёт помогает точно узнать, сколько тепла хранит и теряет здание, и сколько энергии должно вырабатывать отопление, чтобы поддерживать в жилье комфортные условия.

Оценивая теплопотери и степень теплоснабжения, учитываются следующие факторы:

  1. Какой это объект: сколько в нём этажей, наличие угловых комнат, жилой он или производственный и т. д.
  2. Сколько человек будет «обитать» в здании.
  3. Важная деталь – это площадь остекления. И размеры кровли, стен, пола, дверей, высота потолков и т. д.
  4. Какова продолжительность отопительного сезона, климатические характеристики региона.
  5. По СНиПам определяют нормы температур, которые должны быть в помещениях.
  6. Толщина стен, перекрытий, выбранные теплоизоляторы и их свойства.

Могут учитываться и другие условия и особенности, например, для производственных объектов считаются рабочие и выходные дни, мощность и тип вентиляции, ориентация жилья по сторонам света и др.

Пример расчета мощности батарей отопления

Возьмем помещение площадью 15 квадратных метров и с потолками высотой 3 метра.Объем воздуха, который предстоит нагреть в отопительной системе составит:

 V=15×3=45 метров кубических

Далее считаем мощность, которая потребуется для обогрева помещения заданного объема. В нашем случае — 45 кубических метров. Для этого необходимо умножить объем помещения на мощность, необходимую для обогрева одного кубического метра воздуха в заданном регионе. Для Азии, Кавказа это 45 вт, для средней полосы 50 вт, для севера около 60 вт. В качестве примера возьмем мощность 45 вт и тогда получим:

45×45=2025 вт — мощность, необходимая для обогрева помещения с кубатурой 45 метров

Нормы теплоотдачи для отопления помещения

Согласно практике для отопления помещения с высотой потолка не превышающей 3 метра, одной наружной стеной и одним окном, достаточно 1 кВт тепла на каждые 10 квадратных метров площади.

Для более точного расчета теплоотдачи радиаторов отопления необходимо сделать поправку на климатическую зону, в которой находится дом: для северных районов для комфортного отопления 10 м2 помещения необходимо 1,4-1,6 кВт мощности; для южных районов – 0,8-0,9 кВт. Для Московской области поправки не нужны. Однако как для Подмосковья, так и для других регионов рекомендуется оставлять запас мощности в 15% (умножив расчетные значения на 1,15).

Существуют и более профессиональные методы оценки, описанные далее, но для грубой оценки и удобства вполне достаточно и этого способа. Радиаторы могут оказаться чуть более мощными, чем минимальная норма, однако при этом качество отопительной системы лишь возрастет: будет возможна более точная настройка температуры и низкотемпературный режим отопления.

Полная формула точного расчета

Подробная формула позволяет учесть все возможные варианты потери тепла и особенности помещения.

Q = 1000 Вт/м2*S*k1*k2*k3…*k10,

  • где Q – показатель теплоотдачи;
  • S – общая площадь помещения;
  • k1-k10 – коэффициенты, учитывающие теплопотери и особенности установки радиаторов.

Показать значения коэффициентов k1-k10

k1 – к-во внешних стен в помещения (стен, граничащих с улицей):

  • одна – k1=1,0;
  • две – k1=1,2;
  • три – k1-1,3.

k2 – ориентация помещения (солнечная или теневая сторона):

  • север, северо-восток или восток – k2=1,1;
  • юг, юго-запад или запад – k2=1,0.

k3 – коэффициент теплоизоляции стен помещения:

  • простые, не утепленные стены – 1,17;
  • кладка в 2 кирпича или легкое утепление – 1,0;
  • высококачественная расчетная теплоизоляция – 0,85.

k4 – подробный учет климатических условий локации (уличная температура воздуха в самую холодную неделю зимы):

  • -35°С и менее – 1,4;
  • от -25°С до -34°С – 1,25;
  • от -20°С до -24°С – 1,2;
  • от -15°С до -19°С – 1,1;
  • от -10°С до -14°С – 0,9;
  • не холоднее, чем -10°С – 0,7.

k5 – коэффициент, учитывающий высоту потолка:

  • до 2,7 м – 1,0;
  • 2,8 — 3,0 м – 1,02;
  • 3,1 — 3,9 м – 1,08;
  • 4 м и более – 1,15.

k6 – коэффициент, учитывающий теплопотери потолка (что находится над потолком):

  • холодное, неотапливаемое помещение/чердак – 1,0;
  • утепленный чердак/мансарда – 0,9;
  • отапливаемое жилое помещение – 0,8.

k7 – учет теплопотерь окон (тип и к-во стеклопакетов):

  • обычные (в том числе и деревянные) двойные окна – 1,17;

  • окна с двойным стеклопакетом (2 воздушные камеры) – 1,0;
  • двойной стеклопакет с аргоновым заполнением или тройной стеклопакет (3 воздушные камеры) – 0,85.

k8 – учет суммарной площади остекления (суммарная площадь окон : площадь помещения):

  • менее 0,1 – k8 = 0,8;
  • 0,11-0,2 – k8 = 0,9;
  • 0,21-0,3 – k8 = 1,0;
  • 0,31-0,4 – k8 = 1,05;
  • 0,41-0,5 – k8 = 1,15.

k9 – учет способа подключения радиаторов:

  • диагональный, где подача сверху, обратка снизу – 1,0;
  • односторонний, где подача сверху, обратка снизу – 1,03;
  • двухсторонний нижний, где и подача, и обратка снизу – 1,1;
  • диагональный, где подача снизу, обратка сверху – 1,2;
  • односторонний, где подача снизу, обратка сверху – 1,28;
  • односторонний нижний, где и подача, и обратка снизу – 1,28.

k10 – учет расположения батареи и наличия экрана:

  • практически не прикрыт подоконником, не прикрыт экраном – 0,9;
  • прикрыт подоконником или выступом стены – 1,0;
  • прикрыт декоративным кожухом только снаружи – 1,05;
  • полностью закрыт экраном – 1,15.

После определения значений всех коэффициентов и подстановки их в формулу, можно посчитать максимально надежный уровень мощности радиаторов. Для большего удобства ниже находится калькулятор, где можно рассчитать те же самые значения быстро выбрав соответствующие исходные данные.

Пример выполнения расчета

Поправочные коэффициенты в данном случае будут равны:

  • К1 (двухкамерный стеклопакет) = 1,0;
  • К2 (стены из бруса) = 1,25;
  • К3 (площадь остекления) = 1,1;
  • К4 (при -25 °C -1,1, а при 30°C) = 1,16;
  • К5 (три наружные стены) = 1,22;
  • К6 (сверху теплый чердак) = 0,91;
  • К7 (высота помещения) = 1,0. 

В результате полная тепловая нагрузка будет равна: В том случае, когда бы использовался упрощенный метод вычислений, основанный на расчете мощности отопления согласно площади, то результат был бы совсем иной: Пример расчета тепловой мощности системы отопления на видео:

Факторы, влияющие на потребность в тепле

Тепловая мощность зависит от площади помещения, климата региона, степени утепления здания

К основным факторам, определяющим потребность в тепловой энергии для помещения, относят:

  • полный объем нагреваемых пространств;
  • тип и качество утеплительного материала;
  • климатическая зона, в которой располагается здание.

От объема помещения зависит количество воздушного пространства, нуждающегося в обогреве. Чем объемнее отапливаемое помещение, тем больше тепла потребуется для поддержания нужного микроклимата. При одинаковой высоте потолков (порядка 2,5 метров) обычно применяется упрощенный расчет, при котором за основу берется площадь комнаты.

О качестве утепления судят по способам теплоизоляции стен, а также по площади и комплекту окон и дверей. Учитывается также вид остекления – простой и тройной стеклопакет различны по тепловым потерям. Влияние климатического фактора сказывается при прочих равных условиях и учитывается как разность температур на улице и в комнате, где установлен котел.

Для прибора (батареи отопления)

Степень теплопроводности металлов – из некоторых изготавливают радиаторы

При рассмотрении факторов, влияющих на мощность нагрева радиаторов отопления, выделяются три основных:

  • показатель, соответствующий разнице нагрева теплоносителя и окружающей воздушной среды – с его повышением увеличивается тепловая мощность;
  • площадь поверхности, отдающей тепло;
  • теплопроводность используемого материала.

В этом случае наблюдается та же линейная зависимость: с увеличением поверхности батареи возрастает и величина тепловой отдачи. По этой причине многие современные отопительные радиаторы дополняются специальными алюминиевыми ребрами, повышающими общую теплоотдачу.

Общие положения и алгоритм теплового расчета нагревательных приборов

Расчет нагревательных приборов проводится после гидравлического расчета трубопроводов системы отопления по следующей методике. Требуемая теплоотдача нагревательного прибора определяется по формуле:

, (3.1)

где — теплопотери помещения, Вт; при установке в помещении нескольких нагревательных приборов теплопотери помещения распределяются между приборами поровну;

— полезная теплоотдача трубопроводов отопления, Вт; определяется по формуле:

, (3.2)

где — удельная теплоотдача 1 м открыто проложенных вертикальных /горизонтальных/ трубопроводов, Вт/м; принимается по данным табл. 3 приложения 9 в зависимости от разности температур между трубопроводом и воздухом;

— суммарная протяженность вертикальных /горизонтальных/ трубопроводов в помещении, м.

Фактическая теплоотдача нагревательного прибора:

, (3.4)

где — номинальный тепловой поток нагревательного прибора (одной секции), Вт. Принимается по данным табл. 1 приложения 9;

— температурный напор, равный разности полусуммы температур теплоносителя на входе и выходе нагревательного прибора и температуры воздуха помещения:

, °С; (3.5)

где — расход теплоносителя через нагревательный прибор, кг/с;

— эмпирические коэффициенты. Значения параметров в зависимости от типа нагревательных приборов, расхода теплоносителя и схемы его движения приводят в табл. 2 приложения 9;

— поправочный коэффициента способ установки прибора; принимается по данным табл. 5 приложения 9.

Средняя температура воды в нагревательном приборе однотрубной системы отопления в общем случае определяется выражением:

, (3.6)

где — температура воды в горячей магистрали, °C;

— остывание воды в подающей магистрали, °C;

— поправочные коэффициенты, принимаемые по табл. 4 и табл. 7 приложения 9;

— сумма теплопотерь помещений, расположенных до рассматриваемого помещения, считая по ходу движения воды в стояке, Вт;

— расход воды в стояке, кг/с /определяется на стадии гидравлического расчета системы отопления/;

— теплоемкость воды, равная 4187 Дж/(кгград);

— коэффициент затекания воды в нагревательный прибор. Принимается по табл. 8 приложения 9.

Расход теплоносителя через нагревательный прибор определяется по формуле:

, (3.7)

Остывание воды в подающей магистрали находится по приближенной зависимости:

, (3.8)

где — протяженность магистрали от индивидуального теплового пункта до расчетного стояка, м.

Фактическая теплоотдача нагревательного прибора должна быть не менее требуемой теплоотдачи , то есть . Допускается обратное соотношение , если невязка не превышает 5%.

Специфика и другие особенности

Также возможна и другая специфика у помещений, для которых делается расчет, не все же они похожи и совершенно одинаковы. Это могут быть такие показатели как:

  • температура теплоносителя меньше 70 градусов – число частей соответственно предстоит увеличить;
  • отсутствие двери в проеме между двумя помещениями. Тогда требуется подсчитать общую площадь обоих помещений, чтобы вычислить количество радиаторов для оптимального обогрева;
  • установленные на окнах стеклопакеты препятствуют потере тепла, следовательно, можно монтировать меньше секций батареи.

При замене старых чугунных батарей. которые обеспечивали нормальную температуру в комнате, на новые алюминиевые или биметаллические, калькуляция весьма проста. Умножитьте теплоотдачу одной чугунной секции (в среднем 150 Вт). Результат разделите на количество тепла одной новой части.

Расчет мощности батарей отопления по площади

В основе расчета по площади лежат санитарные нормы и правила, которые указывают на то, что на каждые 10 м² площади должно приходиться 100 ватт тепловой мощности. Применяемый при расчете тепловой коэффициент будет отличаться в зависимости от климатических особенностей местности. Так, для южных районов России он равен 0,7-0,9, для Якутии и Чукотки – 2,0, для Дальнего Востока – 1,6.

Подобный подход к получению необходимой мощности радиаторов имеет погрешности, определяемые рядом факторов, таких как наличие панорамного остекления, расположение квартиры внутри дома и высота потолков.

Пример: площадь комнаты в 12 м² умножаем на 100 Вт и коэффициент района 0,7. Полученный результат – 840 ватт. Исходя из мощности одной секции 180 ватт, потребуется 840/180=4,66 секции, что при округлении дает пять. При расчете тепловой мощности и количества батарей специалисты рекомендуют делать 30% запас.

Расчет скорости нагрева

При расчете мощности электронагревательных элементов использованы следующие расчетным данные: масса воды, начальная и конечная (желаемая) температура воды и время, затрачиваемое на нагревание. Мощность ТЭНа P

определяется математическим выражением:P=0,0011m(t k -t н)/T . в котором:m — масса нагреваемой воды,t k иt н — начальная и конечная температура воды,T — затрачиваемое на ее нагревание время. Вычисление мощности нагревательного элемента выполняется данным калькулятором без учета тепловых потерь, связанных с конструктивными особенностями емкости, температуры окружающей среды, состоянием греющей поверхности ТЭНа и пр. Кроме того, следует учесть фактическое напряжение питающей сети, которое может сильно отличаться от номинального значения. Так, при пониженном напряжении, температура рабочей поверхности будет меньше значения, заявленного изготовителем, следовательно, и времени для нагрева потребуется больше. Учитывая удельный вес воды составляет 1 г/см 3. в поле калькулятора “Масса нагреваемой воды” при вводе данных может быть использовано значение ее объема. Результат вычисления (P) может быть значением мощности как одного ТЭНа, так и нескольких параллельно соединенных элементов.

Расчет тепловой мощности

Выполнить точные вычисления по системе отопления затруднительно для неспециалиста, но упрощённые способы позволяют рассчитать показатели неподготовленному человеку. Если производить расчеты «на глаз», может получиться, что мощности котла или нагревателя не хватает. Или, наоборот, из-за избытка вырабатываемой энергии придётся пускать тепло «на ветер».

Способы самостоятельной оценки характеристик отопления:

  1. Использование норматива из проектной документации. Для Московской области применяется величина 100-150 Ватт на 1 м². Площадь, подлежащая обогреву, умножается на ставку — это и будет искомый параметр.
  2. Применение формулы расчета тепловой мощности: N = V × Δ T × K, ккал/час. Обозначения символов: V — объём комнаты, Δ T — разница температур внутри и снаружи помещения, K — коэффициент пропускания тепла или рассеивания.
  3. Опора на укрупнённые показатели. Метод похож на предыдущий способ, но используется для определения тепловой нагрузки многоквартирных зданий.

Значения коэффициента рассеивания берут из таблиц, пределы изменения характеристики от 0,6 до 4. Примерные величины для упрощённого расчёта:

Материал стен К-т пропускания тепла
Неутепленный металлопрофиль 3―4
Доска 50 мм 2,5―3,5
Кладка в 1 кирпич с минимальной изоляцией 2―3
Стандартное перекрытие, двери и окна, перегородка в 2 блока 1―2
Стеклопакеты, керамитовый контур с теплоизолом 0,6―0,9

Пример расчета тепловой мощности котла для помещения 80 м² с потолком 2,5 м. Объём 80 × 2,5 = 200 м³. Коэффициент рассеивания для дома типовой постройки 1,5. Разница между комнатной (22°С) и наружной (минус 40°С) температурами составляет 62°С. Применяем формулу: N = 200 × 62 × 1,5 = 18600 ккал/час. Перевод в киловатты осуществляется делением на 860. Результат = 21,6 кВт.

Способ подключения

Не все понимают, что разводка труб системы отопления и правильное подключение влияют на качество и эффективность теплоотдачи. Разберем этот факт подробнее.

Существует 4 способа подключения радиатора:

  • Боковое. Этот вариант чаще всего используют в городских квартирах многоэтажных домов. Квартир в мире больше, чем частных домов, поэтому производители используют такой тип подключения как номинальный способ определения теплоотдачи радиаторов. Для его расчета используется коэффициент 1,0.
  • Диагональное. Идеальное подключение, потому что теплоноситель проходит по всему прибору, равномерно распределяя тепло по его объему. Обычно этот вид используется, если в радиаторе более 12 секций. При расчете используется повышающий коэффициент 1,1–1,2.
  • Нижнее. В этом случае трубы подачи и обратки подсоединяются снизу радиатора. Обычно такой вариант используется при скрытой проводке труб. В этом виде подключения есть один минус — теплопотери 10%.
  • Однотрубное. Это, по сути, нижнее подключение. Обычно его используют в системе разводки труб ленинградка. И здесь без теплопотерь не обошлось, правда, они в несколько раз больше — 30–40%.

Для чего нужен тепловой расчет?

Как умудрялись обходиться без тепловых расчётов строители прошлого?

Сохранившиеся купеческие дома показывают, что всё делалось просто с запасом: окна поменьше, стены – потолще. Получалось тепло, но экономически не выгодно.

Теплотехнический расчёт позволяет строить наиболее оптимально. Материалов берётся ни больше – ни меньше, а ровно столько, сколько нужно. Сокращаются габариты строения и расходы на его возведение.

Вычисление точки росы позволяет строить так, чтобы материалы не портились как можно дольше.

Для определения необходимой мощности котла также не обойтись без расчётов. Суммарная мощность его складывается из затрат энергии на обогрев комнат, нагрев горячей воды для хозяйственных нужд, и способности перекрывать теплопотери от вентиляции и кондиционирования. Прибавляется запас мощности, на время пиковых холодов.

При газификации объекта требуется согласование со службами. Рассчитывается годовой расход газа на отопление и общая мощность тепловых источников в гигакалориях.

Нужны расчёты при подборе элементов отопительной системы. Обсчитывается система труб и радиаторов – можно узнать, какова должна быть их протяжённость, площадь поверхности. Учитывается потеря мощности при поворотах трубопровода, на стыках и прохождении арматуры.

При расчетах затрат тепловой энергии могут пригодиться знания, как перевести Гкал в Квт и обратно. В следующей статье подробно рассмотрена эта тема с примерами расчета.

Полный расчет теплого водяного пола приведен в этом примере.

Базовые данные

Точный теплотехнический расчет довольно сложен, и его делают специалисты при проектировании системы отопления. Если заказать его проблематично, то простой расчет можно сделать самостоятельно.

Для его выполнения необходимо иметь базовую информацию:

  1. Изначально нужно знать размеры помещения, где будут устанавливаться радиаторы отопления:
  • Длину.
  • Ширину.
  • Высоту.
  1. Затем нужно определиться с выбором батарей:
  • стальные пластинчатые;
  • чугунные;
  • биметаллические;
  • алюминиевые.
  1. В технической документации на каждый радиатор в характеристиках от завода-изготовителя значится тепловая мощность прибора. Это то количество тепла в ваттах, которое может выделить 1 модульный элемент секции за 1 час.

Для справки — один ватт равнозначен 0,86 калорий тепла.

  1. Чтобы рассчитать мощность радиаторов, необходимо воспользоваться нормативными значениями теплоотдачи каждой секции, а именно:
  • Для чугунных батарей советского производства — 160 Вт.
  • Алюминиевых с межосевой высотой в 500 мм — 200 Вт.
  • Стальных панельных неразборных при длине 500 и 800 мм соответственно 700 и 1500 Вт.

Как правильно рассчитать реальную теплоотдачу батарей

Начинать надо всегда с технического паспорта, что прилагается к изделию производителем. В нем вы точно обнаружите интересующие данные, а именно — тепловую мощность одной секции либо панельного радиатора определенного типоразмера. Но не спешите восхищаться отличными показателями алюминиевых или биметаллических батарей, указанная в паспорте цифра — не окончательная и требует корректировки, для чего и нужно сделать расчет теплоотдачи.

Зачастую можно услышать такие суждения: мощность алюминиевых радиаторов самая высокая, ведь общеизвестно, что теплоотдача меди и алюминия – самая лучшая среди других металлов. У меди и алюминия наилучшая теплопроводность, это верно, но передача тепла зависит от многих факторов, о коих будет сказано далее.

Прописанная в паспорте отопительного прибора теплоотдача соответствует истине, когда разница между средней температурой теплоносителя (t подачи + t обратки)/2 и в помещении равна 70 °С. С помощью формулы это выражается так:

Для справки. В документации на изделия от разных фирм данный параметр может обозначаться по-разному: dt, Δt или DT, а иногда просто пишется «при разнице температур 70 °С».

Что означает, когда в документации на биметаллический радиатор написано: тепловая мощность одной секции равна 200 Вт при DT = 70 °С? Разобраться поможет та же формула, только надо в нее подставить известное значение комнатной температуры – 22 °С и провести расчет в обратном порядке:

Зная, что разность температур в подающем и обратном трубопроводах не должна быть больше 20 °С, надо определить их значения таким образом:

Теперь видно, что 1 секция биметаллического радиатора из примера отдаст 200 Вт теплоты при условии, что в подающем трубопроводе будет вода, нагретая до 102 °С, а в комнате установится комфортная температура 22 °С. Первое условие выполнить нереально, поскольку в современных котлах нагрев ограничен пределом 80 °С, а значит, батарея никогда не сможет отдать заявленных 200 Вт тепла. Да и редкий случай, чтобы теплоноситель в частном доме разогревали до такой степени, обычный максимум – это 70 °С, что соответствует DT = 38—40 °С.

Порядок расчета

Получается, что реальная мощность батареи отопления гораздо ниже заявленной в паспорте, но для ее подбора надо понимать, насколько. Для этого есть простой способ: применение понижающего коэффициента к начальной величине тепловой мощности нагревателя. Ниже представлена таблица, где прописаны значения коэффициентов, на которые надо умножить паспортную теплоотдачу радиатора в зависимости от величины DT:

Алгоритм расчета настоящей теплоотдачи отопительных приборов для ваших индивидуальных условий такой:

  1. Определить, какая должна быть температура в доме и воды в системе.
  2. Подставить эти значения в формулу и рассчитать свою реальную Δt.
  3. Найти в таблице соответствующий ей коэффициент.
  4. Умножить на него паспортную величину теплоотдачи радиатора.
  5. Подсчитать число отопительных приборов, нужное для обогрева комнаты.

Для приведенного выше примера тепловая мощность 1 секции биметаллического радиатора составит 200 Вт х 0.48 = 96 Вт. Стало быть, для обогрева помещения площадью 10 м2 понадобится 1 тыс. Вт теплоты или 1000/96 = 10.4 = 11 секций (округление идет всегда в большую сторону).

Представленная таблица и расчет теплоотдачи батарей надо использовать, когда в документации указана Δt, равная 70 °С. Но бывает, что для разных приборов от некоторых фирм – производителей дается мощность радиатора при Δt = 50 °С. Тогда пользоваться этим способом нельзя, проще набрать требуемое количество секций по паспортной характеристике, только взять их число с полуторным запасом.

Для справки. Многие производители указывают значения теплоотдачи при таких условиях: t подачи = 90 °С, t обратки = 70 °С, t воздуха = 20 °С, что соответствует Δt = 50 °С.

Общие данные, необходимые для вычислений

Чем мощнее электрообогреватель, тем быстрее он подогревает заданное количество воды. Поэтому приборы по этому параметру подбирается в соответствии с задачами, необходимым объёмом и допустимым временем ожидания. Так, например, нагрев до 60°С 15 литров с нагревателем в 1,5 кВт займёт около полутора часов. Однако для больших объёмов (например, для наполнения 100-литровой ванны) при разумном времени ожидания (до 3 часов) для доведения жидкости до комфортной температуры понадобится устройство на 3 кВт мощнее.

Для полноценного вычисления расчётной мощности необходимо учесть ряд параметров:

Квартирный счетчик тепловой энергии как правильно снять и передать показания

Снимать показания с квартирных счетчиков тепла следует по аналогии со счетчиками воды. Разница состоит лишь в том, что теплосчетчики на индикатор выводят несколько показателей и, чтобы выбрать нужную, следует внимательно ознакомиться с инструкцией по эксплуатации и четко следовать рекомендациям производителя. После получения необходимых сведений, в квитанцию для оплаты за тепловую энергию следует внести разницу показаний за предыдущий и отчетный периоды, умножить ее на установленный в регионе тариф, и полученную сумму оплатить.

В настоящее время современные приборы учета тепла оснащены встроенным интерфейсом, который позволяет считывать данные в автоматическом режиме. К примеру, счетчик «Комбик-Т» отечественного производства имеет встроенную радиоантенну, что позволяет снимать показания с прибора даже без захода в квартиру. Следует отметить, что к такому устройству можно подключить водомер (счетчик воды) с импульсным выходом, что позволит снимать показания расхода воды (горячей и холодной) также без визуального контакта. Установка таких приборов учета будет удачным решением для лиц, которые часто уезжают в командировки или поездки и не могут лично встречать контроллера, который приходит снимать показания.

Из информации, приведенной в этой статье, можно сделать вывод, что к процедуре снятия и передачи показаний счетчиков тепла стоит относиться с достаточной мерой ответственности.

Сегодня расскажу о том как перевести ГКал в кВт*ч и обратно. Длину, ширину, толщину предмета можно измерить рулеткой. Вес предмета можно определить путем его взвешивания. А вот количество тепловой энергии нельзя измерить ни рулеткой, ни с помощью весов или еще каких-нибудь простейших измерительных приборов. Тепловую энергию можно только вычислить математически. Как и любая величина, тепловая энергия имеет свои единицы измерения.

Метры, сантиметры, миллиметры, дециметры, километры, нанометры и прочее- это единицы измерения длины. Как Вы уже догадались- килограммы, граммы, тонны и прочее- это единицы измерения веса.

А вот ГКал, кВт*ч, Дж – это единицы измерения тепловой энергии. Причем точно так, как метры можно превратить в миллиметры, а килограммы в граммы, так же и Гигакаллории можно с легкостью пересчитать, превратив их в кВт*ч и Дж. Когда Вы установите свой тепловой счетчик, Вам придется научиться пересчитывать ГКал в кВт*ч и обратно.

Это нужно уметь, для того, чтобы передавать показания этого счетчика в Вашу УК (управляющую копанию). Дело в том, что некоторые счетчики выдают показания только в ГКал, а некоторые только в кВт*ч. Управляющие же компании принимают показания счетчиков только в каких-то одних единицах. Вот и приходится каждый месяц пересчитывать. Пересчет- дело не хитрое.

Допустим, Вы хотите превратить 1 ГКал (одну гигакаллорию) в кВт*ч , тогда надо запомнить, что один кВт*ч равен 0,000860 ГКал. Составляем простейшую пропорцию:

1кВт*ч = 0,000860 ГКал

Вспоминаем математику в школе, и вычисляем чему равен Х к Вт*ч в данной пропорции: Х= 1кВт*ч х 1 ГКал / 0,000860 ГКал = 1162,8 кВт*ч

Или наоборот Вам нужно перевести 1 кВт*ч (один киловат час) в ГКал. Опять составляем пропорцию, помятуя, что один кВт*ч равен 0,000860 ГКал.

1кВт*ч = 0,000860 ГКал

Опять делаем вычисления на основе по обычной пропорции: Х= 1кВт*ч х 0,000860 ГКал/ 1кВт*ч= 0,000860 ГКал

Вот, собственно и разобрались с переводом ГКал в кВт*ч. Всё легко и очень просто. Особенно, когда ты эти нехитрые вычисления производишь каждый месяц, предварительно снимая показания теплового счетчика. А вот как их снимать мы разъясним в следующей главе.

Кстати, я умышленно не стал давать ни каких коэффициентов для перевода ГКал в Дж и кВт*ч в Дж. Просто потому, что обычно такая единица, как Дж (джоули) сейчас практически не используется. Это как дециметры в измерении длины. Дециметры вроде как есть, о них можно и нужно знать, и не более того. Такая же эпопея с Джоулями.

Еще одна тонкость, о которой нужно знать — это приставки Кило, Мега и Гига.

Например, кВт*ч (киловатт в час), или МВт*ч (мегаватт в час). Кило – означает число 1000, Мега- 1000000, а вот Гига- 1000000000.

1 кВт*ч = 1000 Вт*ч.

1 МВт*ч = 1000000 Вт*ч = 1000 кВт*ч.

1 ГКал = 1000000000Кал= 1000 Мкал= 1000000 кКал.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector