Геотермальный тепловой насос своими руками для отопления дома: устройство, проектирование, самостоятельная сборка

Содержание:

Что купить — топ-5 лучших насосов

Приобретение теплового насоса — важная и ответственная процедура. Давать какие-либо рекомендации в этой сфере можно только обладая конкретной информацией о размерах дома, материале стен, степени утепленности, конфигурации помещений, типе отопительной системы и т. д. Не обладая этими данными, рассуждать о лучших насосах бессмысленно. Однако, можно рассмотреть наиболее известных производителей, которые поставляют на рынок качественное оборудование и являются лидерами в этой области:

ALTAL GRUP

Компания базируется в Украине, России и Молдове. Производство оборудования ориентировано на условия российских регионов и может использоваться в суровых условиях

NIBE Industrier AB

Шведская фирма, присутствует на рынке с 1949 года и по праву является лидером в своей области. Производство ведется по самым передовым разработкам, используются лучшие материалы и комплектующие

Viessmann Group

Одна из старейших европейских компаний — основание фирмы датируется 1928 годом. Немецкие специалисты наработали огромный опыт и добились высочайшего качества своей продукции

OCHSNER

Австрийская компания, приступившая к серийному изготовлению тепловых насосов одной из первых и получившая признание пользователей благодаря качеству, надежности и долговечности оборудования

Heliotherm

Еще одна австрийская компания, производящая тепловые насосы и другое оборудование. Реализация продукции производится в Европе, отмечается высокое качество, надежность и широкие функциональные возможности отопительных систем

Особенности эксплуатации такого теплового насоса

Раз в год необходимо проводить самостоятельный визуальный осмотру узлов насоса, выполнять рекомендации по техническому обслуживанию – своевременно смазывать детали, следить за корректностью работы прибора при перекачивании воды.

Некоторые виды оборудования нуждаются в регулярной проверке (обычно 1-2 раза в год) специалистов сервисного центра. В ходе проверки выявляют:

  • протечки машинного масла через трещины в контуре;
  • качество креплений и соединений;
  • уровень давления в баках и контурах;
  • неисправности в работе силовой проводки.

Монтаж теплового насоса вода-вода следует поручить обученным специалистам. Неэффективность системы чаще всего связана с ее неправильной установкой. Тепловое оборудование пригодно для эксплуатации как жителями Южный регионов, так и Северных.

Принципиальная схема

После изготовления теплообменников производят сборку газогидравлической схемы:

  • устанавливают по месту компрессор, конденсатор и испаритель;
  • паяют или соединяют на фланец медные трубы;
  • подключают испаритель к насосу грунтового контура;
  • подключают конденсатор к системе отопления.

1 — циркуляционный насос грунтового контура; 2 — испаритель; 3 — выход грунтового контура; 4 — терморегулирующий вентиль; 5 — компрессор; 6 — к системе отопления; 7 — конденсатор; 8 — обратка системы отопления  

Электрическая схема (компрессор, насос грунтового контура, аварийная автоматика) должна подключаться по выделенной цепи, которая обязана выдерживать довольно высокие пусковые токи.

Обязательно использовать автомат защиты, а также аварийное отключение от реле температуры: на выходе воды из конденсатора (при перегреве) и выходе рассола из испарителя (при переохлаждении).

рмнт.ру

16.03.16

Расчет необходимой мощности теплового насоса

Перед покупкой системы важно предварительно составить проект и вычислить необходимую мощность оборудования. Производительность высчитывается с учетом фактических потребностей в тепловой энергии

Берутся во внимание расходы тепла, теплопотери дома и наличие или отсутствие контура ГВС

Алгоритм расчета:

  1. Вычисляем общую площадь отапливаемых помещений.
  2. Определяемся с необходимым количеством энергии для отопления. Оптимальный показатель на 1 квадратный метр – 0,07 кВт.
  3. Чтобы протопить дом на N квадратных метров, понадобиться N*0,07 кВт.
  4. Для ГВС к полученному числу добавляют дополнительно 15-20%, то есть N*0,07*0,85 или N*0,07*0,80.

Это расчет будет оптимальным для помещений с потолками, не превышающими высоту 2,7 м. Более точные вычисления сделают специалисты во время составления проекта.

Особенности оборудования

В семидесятые годы в Америке примечательный изобретатель Евгений Френетт показал миру свое создание – тепловой насос Френетта, названный в честь своего открывателя.

Примечателен он в первую очередь тем, что КПД превышает 100%. Некоторые верят и в 700 и 1000 процентов, но скептики, оперирующие физическими законами, не поддерживают их — это, все-таки, преувеличение.

Сфера применения насоса Френетта не ограничивается жилыми помещениями. Его с успехом применяют на производстве.

В свое время этот прибор был очень популярен, поэтому энтузиасты изучали его схему, все больше совершенствуя конструкцию теплового насоса.

Основной принцип все так же не изменился: создатель устройства предлагал простое, но гениальное в своей простоте изобретение. Все основывается на выделении тепла вследствие трения.

Когда он представлял впервые тепловой насос Френетта, схема была такова:

  • Два цилиндра отличного размера: меньший в большем. В небольшом промежутке между ними масло.
  • Малый мотор оборудован с одной стороны вентилятором, с другой – двигателем (электромотор).
  • Внешний корпус подразумевал пазы для воздуха, а оптимизировал работу установки термостат.

Теперь разберемся, как примерно функционировал данный агрегат, который по своей конструкции отличается от большинства привычных и знакомых нам климатических устройств.

За счет вращения малого цилиндра разогревается масло. Вентилятор распространяет теплый воздух в помещении.

Несмотря на то, что эта система называется тепловым насосом, с правильным представлением этого термина машина Френетта совпадает только в роли обогревателя.

Тепловой насос должен работать по обратному принципу Карно, преобразуя низкий потенциал окружающей среды в высокий потенциал энергии тепла. Здесь же такого нет.

Многие пытались преображать изобретение, в том числе и сам его создатель. Поэтому можно обнаружить разные виды насоса Френетта.

Конструктивные отличия от вышеописанных нюансов, например, могут быть следующими:

Барабан с цилиндрами находится в горизонтальном положении, по центру проходит вал, конец которого выступает наружу. Вентилятора нет, обычно его заменяет радиатор или же теплоноситель подается сразу в систему

Важно обеспечить герметичность установки. Вид из двух барабанов с крыльчаткой между ними. Разогретое масло выбрасывается из крыльчатки в зазор между ротором и корпусом насоса, обеспечивая максимальную производительность.
Нестандартный вид насоса Френетта, разработка хабаровских ученых

Масло заменено на воду, основа – грибовидный элемент. Образующийся при нагревании и кипении пар движется по каналам со скоростью до 135 метров в минуту. Эта конструкция способна существовать без подвода энергии извне. Применяют его только в промышленных целях

Разогретое масло выбрасывается из крыльчатки в зазор между ротором и корпусом насоса, обеспечивая максимальную производительность.
Нестандартный вид насоса Френетта, разработка хабаровских ученых. Масло заменено на воду, основа – грибовидный элемент. Образующийся при нагревании и кипении пар движется по каналам со скоростью до 135 метров в минуту. Эта конструкция способна существовать без подвода энергии извне. Применяют его только в промышленных целях.

Принцип и схема работы теплового насоса, виды

Принцип

Конструкция любого теплового теплонасоса предусматривает 2 части: наружная (поглощает тепло из внешних источников) и внутренняя (передает изъятое тепло непосредственно в систему отопления помещения). Внешними возобновляемыми источниками тепловой энергии являются, например, тепло земли, воздуха или грунтовых вод. Такая конструкция позволяет существенно снизить затраты на теплоэнергию или охлаждение для частного дома, ведь примерно 75% энергии вырабатывается, благодаря бесплатным источникам.

Схема работы

В состав отопительной установки входят: испаритель; конденсатор; разряжающий вентиль, который понижает давление в системе; компрессор, повышающий давление. Каждый из этих узлов связан друг с другом замкнутой цепью трубопровода, внутри которого находится хладагент. Хладагент в первых циклах находится в жидком состоянии, в следующих – в газообразном. Это вещество обладает низкой температурой кипения поэтому при варианте земляного типа оборудования, способен преобразоваться в газ, достигнув уровня температуры грунта. Далее газ поступает в компрессор, где происходит сильное сжатие, которое приводит к быстрому нагреву. После горячий пар поступает во внутреннюю часть теплонасоса, и уже здесь используется непосредственно для отопления помещений или для нагрева воды. Затем хладагент охлаждается, конденсируется и снова переходит в жидкое состояние. Через расширительный клапан жидкое вещество перетекает в подземную часть, чтобы повторить цикл нагрева.

Принцип охлаждения такой установки аналогичен принципу отопления, но используются не радиаторы, а фанкойлы. Компрессор в этом случае не функционирует. Холодный воздух из скважины напрямую поступает в кондиционирующую систему.

Виды теплонасосов

Какие бывают типы тепловых насосов? Различают оборудование по внешнему источнику теплоэнергии, который используется в системе. Среди бытовых вариантов выделяют 3 типа.

Грунтовый или земляной («грунт-воздух», «грунт-вода»)

Применение земляного теплонасоса в качестве источника теплоэнергии обеспечит эко-чистоту и безопасность. Стоимость такого оборудования высока, но функционал его огромен. Не требуется частого сервисного обслуживания, и обеспечен долгий срок эксплуатации.

Грунтовые теплонасосы могут быть двух видов: с вертикальной или с горизонтальной установкой трубопроводов. Вертикальный метод укладки более дорогостоящий, так как требуется глубокое бурение скважин в диапазоне 50-200 метров. При горизонтальном расположении трубы закладываются на глубину около метра. Для того, чтобы обеспечить сбор необходимого количества теплоэнергии, совокупная площадь трубопроводов должна превышать в 1,5-2 раза площадь отапливаемых помещений.

Водный насос («вода-воздух», «вода-вода»)

Для южных регионов с теплым климатом подойдут водяные установки. В прогретых на солнце водоемах температура воды на определенной глубине относительно устойчива. Предпочтительно прокладывать шланги в самом грунте дна, где температура выше. Для фиксации подводных трубопроводов используется груз.

Воздушный («воздух-вода», воздух-воздух»)

В установке воздушного типа источником энергии является воздух из внешней среды, который поступает на теплообменник испарителя, в где расположен жидкий хладогент. Температура хладогента всегда ниже, чем температура поступающего в систему воздуха, поэтому вещество моментально закипает и становится горячим паром.

Помимо классических моделей, востребованы комбинированные варианты установок. Такие теплонасосы дополнены газовым или же электрическим нагревателем. При плохих климатических условиях, производительность отопительного устройства уменьшается, и аппарат переключается на альтернативный вариант обогрева. Особенно актуально такое дополнение для оборудования типа «воздух-вода» или «воздух-воздух», так как именно этим видам свойственно понижение эффективности.

Для регионов с долгими холодными зимами надежнее всего использовать геотермальные (грунтовые) тепловые насосы. Воздушные теплонасосы подойдут для территорий с мягким южным климатом. Также при установке оборудования, использующего энергию земли, следует учитывать особенности грунта. Продуктивность теплонасоса будет гораздо выше в глинистом грунте, нежели в песчаном. Помимо этого, имеет значение глубина расположения трубопроводов, трубы необходимо укладывать глубже уровня промерзания земли в холодные периоды.

Как сделать своими руками?

Разбираясь в схеме и особенностях действия теплового насоса, можно с легкостью собрать его и установить самостоятельно. Прежде чем приступать к самостоятельной сборке оборудования, надо тщательно рассчитать главные его параметры. Для данной процедуры можно использовать программное обеспечение для оптимизации систем охлаждения.

Проще всего сделать насос типа «воздух-вода». Работы предстоят совсем несложные, и даже человек без специальных знаний и умений сможет самостоятельно сделать данную модель. Для установки необходимо всего два канала – по одному из них будет циркулировать воздух, а со второго будет выводиться отработка.

Необходимо будет приобрести вентилятор и компрессор подходящей мощности. Можно использовать компрессор, предназначенный для сплит-систем. Совсем необязательно покупать новую деталь. Если имеется старое оборудование, можно снять компрессор оттуда, например, из холодильника. Специалисты советуют использовать спиральный тип, который отличается эффективностью и повышенным давлением.

Для сборки конденсатора необходимо приготовить емкость и медную трубу, из которой надо будет сделать змеевик. Для его производства применяется цилиндр оптимального диаметра, намотав который на трубу можно получить змеевик. Готовая комплектующая деталь устанавливается в заранее разрезанную на две ровные части емкость, для производства которой надо применять материалы, устойчивые к образованию коррозии.

Чтобы узнать площадь змеевика, надо коэффициент теплопроводности (0,8) умножить на разницу температур жидкости, после чего мощность энергии разделить на полученный показатель. При выборе трубки для змеевика обязательно учитывайте толщину стен. Она не должна быть меньше 1 мм. Если же выбрать меньшую толщину, то при обматывании труба потеряет свою форму. Труба, по которой входит хладагент, устанавливается сверху емкости.

Испаритель оборудования можно произвести в форме емкости со змеевиком и в форме трубы в трубе. Из-за того, что температура в испарителе не набирает слишком высокую температуру, емкость можно изготовить из пластика. В нее же надо установить контур из трубы из меди

Важно, чтобы спираль змеевика была подобрана согласно толщине и высоте емкости. Если же испаритель вы делаете по методу «труба в трубе», надо чтобы трубка хладагента была установлена в большой трубе из пластика, по ней и будет перемещаться жидкость

На длину трубы влияет мощность прибора, и в среднем ее размеры бывают от 25 до 40 м. Ей придают форму спирали.

Терморегулирующий клапан является частью трубопроводной арматуры. Запорной деталью является игла, на ее позицию влияет температура в испарителе. Конструкция данной комплектующей довольно-таки сложная. Все комплектующие детали могут стать неисправными из-за повышенных температур. Именно поэтому клапан надо отгородить от негативного воздействия асбестовой тканью.

После того как все детали изготовлены по отдельности, необходимо заняться сборкой всех комплектующих в единое целое. Самой серьезной процедурой является закачивание хладагента или теплоносителя в конструкцию. Данную работу выполнять самостоятельно невозможно, так как необходимо специальное оборудование. А неправильное выполнение процесса может привести к выходу из строя системы или даже к травмам.

Огромное внимание надо уделить выбору хладагента – это основное вещество, которое транспортирует полезную тепловую энергию. Востребованным является фреон

Именно данный вид хладагента рекомендуют выбирать специалисты.

Если все вышеперечисленные работы будут выполнены правильно, у вас получится устройство с замкнутым контуром, где будет происходить циркуляция хладагента, отбирая и транспортируя тепловую энергию от испарителя к конденсатору.

Благодаря тому, что температура энергии невысокая, потребителем тепла могут быть разные отопительные приборы – теплый пол, алюминиевые радиаторы. Насосы, сделанные самостоятельно, станут отличным дополнительным оборудованием, которое будет улучшать работу главного источника тепла.

Ежегодно рынок предлагает модернизированные тепловые насосы, производительность которых постоянно улучшается. Более того, современные модели не вредят природе и здоровью человека. Открытого пламени в насосах нет, поэтому работа их не представляет собой ничего опасного. Как при установке, так и при эксплуатации с системой не должно возникнуть проблем.

Что такое тепловой насос для отопления частного дома? Как работает?

Специальное устройство, которое способно извлекать тепло из окружающей среды называется тепловой насос.

Применяются такие приборы в качестве основного или дополнительного метода обогрева помещений. Некоторые устройства также работают на пассивное охлаждение здания — при этом насос применяется как для летнего охлаждения, так и для зимнего обогрева.

В качестве топлива используется энергия окружающей среды. Такой обогреватель извлекает тепло из воздуха, воды, грунтовых вод и так далее, поэтому это устройство относят к классу возобновляемых источников энергии.

Важно! Для работы таких насосов требуется подключение к электросети. В состав всех тепловых аппаратов входит испаритель, компрессор, конденсатор и расширительный клапан. В зависимости от источника тепла различают водяные, воздушные и другие устройства

Принцип действия очень похож на принцип работы холодильника (только холодильник выбрасывает горячий воздух, а насос поглощает тепло)

В зависимости от источника тепла различают водяные, воздушные и другие устройства. Принцип действия очень похож на принцип работы холодильника (только холодильник выбрасывает горячий воздух, а насос поглощает тепло)

В состав всех тепловых аппаратов входит испаритель, компрессор, конденсатор и расширительный клапан. В зависимости от источника тепла различают водяные, воздушные и другие устройства. Принцип действия очень похож на принцип работы холодильника (только холодильник выбрасывает горячий воздух, а насос поглощает тепло).

Большинство приспособлений работают как при положительных, так и при отрицательных температурах, однако КПД устройства напрямую зависит от внешних условий (т. е. чем выше температура окружающей среды, тем мощнее будет устройство). В общем случае прибор работает следующий образом:

  1. Тепловой насос вступает в контакт с окружающими условиями. Обычно аппарат извлекает тепло из земли, воздуха или воды (в зависимости от типа устройства).
  2. Внутри прибора установлен специальный испаритель, который заполнен хладагентом.
  3. При контакте с внешней средой хладагент закипает и испаряется.
  4. После этого хладагент в виде пара поступает в компрессор.
  5. Там он сжимается — благодаря этому серьёзно повышается его температура.
  6. После этого разогретый газ поступает в систему отопления, что приводит к нагреванию основного теплоносителя, который и используется для отопления помещений.
  7. Хладагент понемногу охлаждается. В конце он превращается обратно в жидкость.
  8. Потом жидкий хладагент поступает в специальный клапан, который серьёзно понижает его температуру.
  9. В конце хладагент вновь попадает в испаритель, после чего цикл нагрева повторяется.

Фото 1. Принцип работы теплового насоса типа грунт-вода. Синим цветом показан холодный теплоноситель, красным — горячий.

Преимущества:

  • Экологичность. Такие устройства относятся к возобновляемым источникам энергии, которые не загрязняют атмосферу своими выбросами (тогда как в случае использования природного газа образуются вредные парниковые испарения, а для производства электроэнергии часто применяется сжигание угля, из-за чего также загрязняется воздух).
  • Хорошая альтернатива газу. Тепловой насос идеально подойдёт для отопления помещений в случаях, когда использование газа затруднительно по тем или иным причинам (например, когда дом находится вдали ото всех основных инженерных сетей). Насос также выгодно отличается от газового отопления тем, что для установки такого прибора не требуется получать государственное разрешение (но при бурении глубокой скважины его все же придётся получить).
  • Недорогой дополнительный источник тепла. Насос идеально подойдёт в качестве дешёвого вспомогательного источника питания (оптимальный вариант — применение газа зимой и насоса — весной и осенью).

Недостатки:

  1. Тепловые ограничения в случае использования водяных насосов. Все тепловые аппараты хорошо функционируют при положительных температурах, тогда как в случае работы при отрицательных температурах многие насосы перестают работать. В основном это связано с тем, что при этом вода замерзает, что делает невозможным её применение как источника тепла.
  2. Могут появиться проблемы с устройствами, которые в качестве тепла используют воду. Если для нагрева применяется вода, то потребуется найти её стабильный источник. Чаще всего для этого следует пробурить скважину, благодаря чему расходы на монтаж устройства могут возрасти.

Внимание! Насосы обычно стоят в 5—10 раз дороже газового котла, следовательно использование таких приборов в целях экономии в ряде случаев может быть нецелесообразно (чтобы насос окупился, потребуется подождать несколько лет)

Расчет

Разобравшись в работе циркуляционного насоса, надо правильно рассчитать его мощность. Данный процесс не такой простой, как кажется на первый взгляд. Лучше доверить его профессионалам, но можно и выполнить самостоятельно. Мощность насоса напрямую зависит от площади помещения, которое он будет отапливать. Например, если здание площадью 200 м2, то для его отопления понадобится 20 кВт мощности. Чтобы обеспечить в помещении оптимальную температуру, надо придерживаться следующего соотношения – 1 кВт тепловой энергии на 10 м2.

Затем надо обязательно высчитать разницу температур на подаче и обратке. Лучше всего выбирать показатель 10 градусов.

Что такое тепловой насос

Использовать природное тепло земли для обогрева жилья проще всего при наличии в регионе геотермальных вод (как это делают в Исландии). Но такие условия большая редкость.

И в то же время тепловая энергия есть везде — надо только ее извлечь и заставить работать. Для этого и служит тепловой насос. Что он делает:

  • отбирает энергию у низкотемпературных природных источников;
  • аккумулирует ее, то есть поднимает температуру до высоких значений;
  • отдает ее теплоносителю системы отопления.

1 — земля; 2 — циркуляция рассола; 3 — циркуляционный насос; 4 — испаритель; 5 — компрессор; 6 — конденсатор; 7 — система отопления; 8 — хладагент; 9 — дроссель

Второй контур — это и есть сам тепловой насос, внутри которого находится фреон. Цикл теплового насоса состоит из следующих этапов:

  1. В испарителе фреон нагревается до температуры кипения. Она зависит от типа фреона и давления в этой части системы (обычно до 5 атмосфер).
  2. В газообразном состоянии фреон поступает в компрессор и сжимается до 25 атмосфер, при этом его температура растет (чем больше сжатие, тем выше температура). Это и есть фаза аккумуляции тепла — из большого объема с низкой температурой переход в малый объем с высокой температурой.
  3. Нагретый давлением газ поступает в конденсатор, в котором происходит передача тепла теплоносителю системы отопления.
  4. После охлаждения фреон попадает в дроссель (он же регулятор потока или терморегулирующий вентиль). В нем давление падает, фреон конденсируется и в виде жидкости возвращается в испаритель.

Как сделать тепловой насос своими руками

Использовать тепловые насосы для отопления дома выгодно и удобно. Имеющийся опыт показывает, что в частных домах жилой площадью более 400 кв. м такая конструкция окупится в течение нескольких лет эксплуатации, несмотря на высокую стоимость. Владельцы домов с более скромными размерами успешно разрабатывают и устанавливают теплонасосы собственной конструкции. Вот некоторые принципы создания этих полезных устройств:

  • для начала нужно позаботиться о приобретении компрессора, например, предназначенного для кондиционера. Обычно его закрепляют на стене.
  • другую важную часть конструкции — конденсатор — можно сделать самостоятельно. Для этого понадобится сделать змеевик из медной трубы (толщина не менее 1 мм), который помещают в корпус из металла или пластика. В качестве корпуса подойдёт бак подходящего размера. После того как змеевик установлен, половинки бака сваривают, монтируя необходимые резьбовые соединения. Испаритель тоже обычно монтируют на стене. Чтобы сделать качественный змеевик, можно намотать медную сантехническую трубу вокруг предмета подходящего диаметра, вполне подойдет газовый баллон. Чтобы расстояние между витками было одинаковым, используют перфорированный алюминиевый уголок, на котором закрепляют витки змеевика.
  • окончательный монтаж этого оборудования: пайку медной трубы, закачку фреона и т. п. — должен выполнять только квалифицированный специалист. Неумелые действия могут повредить оборудование, кроме того, они связаны с высокой вероятностью получения бытовых травм.
  • после этого конструкцию подключают к внутренней системе отопления дома.
  • затем производится монтаж и подключение наружного контура, особенности этого процесса зависят от вида теплового насоса.

Перед пуском теплонасоса не помешает диагностировать состояние домовой электропроводки и счетчика. Ветхое и устаревшее оборудование необходимо заменить. Приемлемая мощность электросчётчика составляет не менее 40 ампер.

К сожалению, не всякий тепловой насос для отопления дома оправдывает ожидания владельцев. Чаще всего это связано с отсутствием правильных термодинамических расчётов. В результате получается система с недостаточной мощностью или неоправданно растут затраты на чрезмерно мощное оборудование. Чтобы подобрать систему с подходящей мощностью, следует учесть теплопотери здания, а также множество других характеристик. Поручать такие расчёты следует инженеру-проектировщику.

Монтаж своими руками

Если владелец дома хорошо разбирается в принципе работы и
схеме оборудования, можно собрать насос самостоятельно. Предварительно
требуется провести расчеты, для этого воспользуйтесь готовым ПО для оптимизации охладительных систем.

Видео монтажа

Меньше всего сложностей предполагает произведенный своими руками монтаж системы отопления дома «воздух – вода». Она будет состоять из двух каналов (для
подачи воздушного потока и для отвода отработанного), вентилятора и
компрессора. Компрессор не обязательно приобретать новый, допускается
воспользоваться рабочим устройством с холодильника или другого оборудования.
Рекомендуется использовать спиральный компрессор.

Этапы работы:

  1. Сделать из медной трубы змеевик. Трубу, по
    которой будет поступать холодильный агент, разместить сверху.
  2. Вмонтировать змеевик в разделенную напополам
    пластиковую емкость. Она будет выполнять роль испарителя.
  3. Подключить терморегулирующий клапан и
    заизолировать его.
  4. Собрать все элементы в блок и проверить его
    работоспособность.

Важно отметить, что данная процедура является достаточно
сложной для обычного человека. Непрофессионал не сможет правильно собрать все
детали и подключить терморегулирующий клапан. Лучше доверить выполнение работ мастерам,
т.к

ошибки в процедуре станут причиной неправильного функционирования
оборудования либо неэффективного потребления электричества

Лучше доверить выполнение работ мастерам,
т.к. ошибки в процедуре станут причиной неправильного функционирования
оборудования либо неэффективного потребления электричества.

Таким образом, тепловой насос – эффективный способ отопления частного дома. На сегодняшний день в России и странах СНГ использование данного оборудования не сильно распространено, однако в Европе и США такие установки активно применяются для отопления.

Выбирать подходящий тепловой насос рекомендуется на основании не только стоимости монтажных работ и эксплуатации, но и региона использования, условий строительства, площади участка и других факторов.

Принцип работы и схема теплового насоса

Теплонасосы способны работают от натуральных источников энергии. Прибор выделяет тепло без дизельного или твердого топлива.

Сам насос не может выделить тепло, он просто переносит его в дом. На это требуется небольшое количество электричества. Достаточно иметь тепловой насос и внешний источник энергии для обогрева здания. Работает насос противоположно холодильнику. Тепло забирается снаружи и направляется в помещение.

Схема теплового насоса:

  1. Компрессор – промежуточный элемент системы;
  2. Испаритель – элемент передачи низкопотенциальной энергии;
  3. Дроссельный клапан – по нему перемещается фреон в испаритель;
  4. Конденсатор – в нем хладагент охлаждается и отдает свое тепло.

Сначала энергия выделяется из природных источников и попадает в испаритель. Дальше тепло передается фреону. В компрессоре хладагент поддается высокому давлению и его температура повышается. Дальше фреон направляется в конденсатор, где и происходит его отдача отопительной системе. Хладагент возвращается в испаритель, где процесс повторяется.

Алгоритм сборки самодельного агрегата

Почти все элементы воздушного теплового насоса можно изготовить самостоятельно. Компрессор рекомендуется снять с обычной сплит-системы. Как правило, такой прибор имеет подходящие характеристики и работает достаточно бесшумно. Помимо компрессора, понадобится ряд материалов:

  • металлический бак из нержавейки, объемом 100 л или более;
  • пластиковая бочка с широкой горловиной;
  • трубы из меди различного диаметра (толщина стенок трубы — не менее 1 мм);
  • набор муфт и переходников;
  • электроды;
  • сливной кран;
  • отвоздушиватель ДУ-15;
  • предохранительный клапан;
  • манометры;
  • устройства для автоматического управления;
  • кронштейны для крепления элементов системы;
  • фреон и др.

Чтобы сделать воздушный тепловой насос, необходимо:

  1. Запастись подходящим компрессором и кронштейнами для его монтажа на стену. Чтобы сделать тепловой насос мощностью 9кВт, понадобится компрессор на 7,2 кВт.
  2. Изготовить из медной трубки змеевик, равномерно намотав трубу вокруг баллона нужного диаметра.
  3. Для изготовления конденсатора разрезать пополам стальной бак на 100 литров, вставить внутрь медный змеевик.
  4. Заварить бак и установить резьбовые соединения. Для установки готового конденсатора также понадобятся кронштейны.
  5. Разрезать пластиковую бочку, чтобы сделать испаритель.
  6. Вставить в испаритель медный змеевик из трубы на ¾ дюйма.
  7. Для монтажа испарителя на стену нужен еще один набор L-образных кронштейнов.
  8. Соединить элементы в общую систему.
  9. Пригласить мастера по холодильному оборудованию, который проверит качество сборки и закачает в систему хладагент.

После этого необходимо обеспечить забор наружного воздуха и его сброс для контакта с испарителем, а также подключить устройство к системе отопления дома.

Чтобы сделать змеевик из медной трубки для теплового насоса «воздух-вода», можно взять баллон подходящего диаметра из-под фреона или газа и аккуратно намотать трубку на него

Компрессор для теплового насоса «воздух-вода» можно снять со сплит-системы, удостоверившись, что у него достаточная мощность. Для изготовления конденсатора подойдет металлический бак

Как сориентироваться при выборе теплового насоса

Для выбора конкретного вида теплового насоса для отопления дома с хорошей ценой, нужно определиться со следующими параметрами:

  • Сумма, с которой вы готовы расстаться для покупки оборудования;
  • Тип местности, где находится дом, который вы собираетесь обеспечить альтернативным методом отопления. От расположения ставков или грунтовых вод зависит тип установки;
  • Нужно определиться, есть ли у вас возможность, для бурения скважины под тепловой насос;
  • Главный нюанс, это точный расчёт необходимой мощности для полноценного отопления дома;

Как рассчитать мощность необходимого оборудования

В первую очередь нужно просчитать точную кубатуру вашего здания, применив следующую формулу: V = Высота потолка х Ширина здания х Длина здания.

Для более точного определения необходимой мощности, нужно рассчитать разницу температур между улицей и микроклиматом в середине здания: Т = Твнутри — Тснаружи = нужный градус цельсия.

Конечная формула включает в себя учёт всех выше перечисленных параметров: Q = V x T, кВт.

Принцип работы насоса воздух-вода

Как уже было сказано, основным источником тепловой энергии для установок этого типа является атмосферный воздух. В принципиальной основе работы воздушных насосов лежит физическое свойство жидкостей к поглощению и отдаче тепла во время фазового перехода из жидкого состояния в газообразное, и обратно. В результате смены состояния выделяется температура. Система работает по принципу холодильника наоборот.

Для эффективного использования этих свойств жидкости легкокипящий хладагент (фреон, хладон) циркулирует по замкнутому контуру в конструкцию которого входят:

  • компрессор с электроприводом;
  • обдуваемый вентилятором испаритель;
  • дроссельный (расширительный) клапан;
  • пластинчатый теплообменник;
  • медные или металлопластиковые циркуляционные трубки, соединяющие основные элементы схемы.

Движение хладагента по контуру осуществляется благодаря давлению, развиваемому компрессором. Для снижения тепловых потерь трубы покрываются теплоизоляционным слоем из искусственного каучука или вспененного полиэтилена с защитным металлизированным покрытием. В качестве хладагента используют хладон или фреон, способный закипать при отрицательной температуре и не замерзающий до -40°C.

Весь процесс работы состоит из следующих последовательных циклов:

  1. В радиаторе испарителя находится жидкий хладагент, температура которого ниже, чем у наружного воздуха. Во время активного обдува радиатора тепловая энергия от низко потенциального воздуха передается хладону, который закипает и переходит в газообразное состояние. При этом его температура повышается.
  2. Подогретый газ поступает в компрессор, где в процессе сжатия еще более нагревается.
  3. В сжатом и разогретом состоянии пары хладагента подаются в пластинчатый теплообменник, где по второму контуру циркулирует теплоноситель системы отопления. Поскольку температура теплоносителя значительно ниже, чем у разогретого газа, фреон активно конденсируется на пластинах теплообменника, отдавая тепло в систему отопления.
  4. Охлажденная парожидкостная смесь поступает на дроссельный клапан, который пропускает к испарителю только охлажденный жидкий хладагент с низким давлением. После чего весь цикл повторяется.

Для увеличения эффективности теплоотдачи трубки на испарителя навито спиральное оребрение. Расчет системы отопления, выбор циркуляционных насосов и другого оборудования должен учитывать гидравлическое сопротивление и коэффициент теплопередачи пластинчатого теплообменника установки.

Видео обзор устройства системы и ее работы

Инверторные тепловые насосы

Наличие инвертора в составе установки позволяет обеспечить плавный пуск оборудования и автоматическое регулирование режимов в зависимости от температуры наружного воздуха. Это позволяет максимально повысить эффективность работы теплового насоса за счет:

  • достижения КПД на уровне 95-98%;
  • снижения потребления энергии на 20-25%;
  • минимизации нагрузок на электрическую сеть;
  • увеличения сроков эксплуатации установки.

В результате температура внутри помещений стабильно поддерживается на одном уровне, не зависимо от изменения погоды. При этом наличие инвертора в комплекте с автоматизированным блоком управления обеспечит не только зимний обогрев, но и подачу охлажденного воздуха летом при жаркой погоде.

В то же время следует учесть, что наличие дополнительного оборудования всегда влечет за собой его удорожание и увеличение срока окупаемости.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector