Tl 431 стабилитрон, схемы включения, характеристики регулятор

Содержание:

ЗУ для мобильного телефона

Стабилизатор можно применить как своеобразный ограничитель тока. Это свойство будет полезным в устройствах для зарядки мобильного телефона.

Если напряжение в выходном каскаде не достигнет 4,2 В, происходит ограничение тока в цепях питания. После достижения заявленных 4,2 В стабилизатор уменьшает величину напряжения — следовательно, падает и величина тока. За ограничение величины тока в схеме отвечают элементы схемы VT1 VT2 и R1-R3. Сопротивление R1 шунтирует VT1. После превышения показателя в 0,6 В элемент VT1 открывается и постепенно ограничивает подачу напряжения на биполярный транзистор VT2.

На базе транзистора VT3 резко уменьшается величина тока. Происходит постепенное закрытие переходов. Напряжение падает, что приводит к падению силы тока. Как только U подходит к отметке 4,2 В, стабилизатор tl431 начинает уменьшать его величину в выходных каскадах устройства, и заряд прекращается. Для изготовления устройства необходимо использовать следующий набор элементов:

  • DA1 – TL431K — если нет в наличии этого элемента, то его можно заменить на tl4311, tl783ckc ;
  • R1 – 2,2 Ом;
  • R2 – 470 Ом;
  • R3 – 100 кОм;
  • R4 – 15 кОм;
  • R5 – 22 кОм;
  • R6 – 680 Ом;
  • VT1, VT2 – BC857B;
  • VT3 – az431 или az339p ;
  • VT4 – BSS138.

Необходимо обратить особое внимание на транзистор az431. Для равномерного уменьшения напряжения в выходных каскадах желательно поставить транзистор именно az431, datasheet биполярного транзистора можно наблюдать в таблице

Операционный усилитель TL431 является многофункциональным элементом и дает возможность конструировать различные устройства: зарядные для мобильных телефонов, системы сигнализации и многое другое. Как показывает практика, операционный усилитель обладает хорошими характеристиками и не уступает зарубежным аналогам.

Особенности эксплуатации

TL431 обладает мощным корпусом, программируемым выходным напряжением, низким эквивалентным температурным и световым коэффициентом, не содержит свинца и имеет низкий выход шума сигнализатора. Проверяется мультиметром.

Принцип работы очень просто понять, смотря на структурную схему. В момент того, когда напряжение на выходе ниже, чем на опоре, то на конце операционный усилитель будет работать с такой же силой. Если же этот показатель будет в норме, то усилителем будет открыт транзистор и по катоду с анодом будет течь заряд.

Использование и принцип включения цоколевки TL431

Компенсационный стабилизатор напряжения

Принцип его работы такой же, как и у обычного стабилитрона. Благодаря разности напряжения у входа и выхода компенсируется мощного вида биполярный транзистор. Однако стабилизированная точность выше благодаря выходу стабилизатора.

Обратите внимание! Для стабилизации тока используется промежуточный вид усилительного каскада. Оба транзисторных устройства работают с эмиттерным повторителем, то есть усиливается ток и не повышается показатель силы

Подключение компенсационного стабилизатора напряжения

Реле времени

Важно понимать, что TL431 многофункциональный. Благодаря показателю в 4 микроампера входного тока, можно сделать реле времени

Когда основной контакт разомкнется, медленно начнет заряжаться транзистор. При получении напряжения в 2,5 вольт, транзистор на выходе будет открыт, и благодаря оптопаровому светодиоду будет протекать электроток. В соответствии с этим будет открыт фототранзистор и замкнута внешняя цепь.

Согласно приведенной ниже схеме, второй резистор осуществляет ограничение тока с помощью оптрона и стабилизатора, третий же предупреждает тот момент, чтобы зажегся светодиод.

Схема работы реле времени

TL 431 интегральный стабилитрон

Основные характеристики программируемого источника опорного напряжения TL 431

  • ​ Номинальное рабочее напряжение на выходе от 2,5 до 36 В;
  • Ток на выходе до 100 мА;
  • Мощность 0,2 Ватт;
  • Диапазон рабочей температуры для TL 431C от 0° до 70°;
  • Диапазон рабочей температуры для TL 431A от -40° до +85°.

Точность интегральной схемы TL 431 указывается шестой буквой в обозначении:

  • Точность без буквы – 2%;
  • Буква А – 1%;
  • Буква В – 0, 5%.

Столь широкое его применения обусловлено низкой ценой, универсальным форм-фактором, надёжностью, и хорошей устойчивостью к агрессивным факторам внешней среды. Но также следует отметить точность работы данного регулятора напряжения. Это позволило ему занять нишу в устройствах микроэлектроники.

Основное предназначение TL 431 стабилизировать опорное напряжение в цепи. При условии, когда напряжение на входе источника ниже номинального опорного напряжения, в программируемом модуле транзистор будет закрыт и проходящий между катодом и анодом ток не будет превышать 1 мА. В случае, когда выходное напряжение станет превышать запрограммированный уровень, транзистор будет открыт и электрический ток сможет свободно проходит от катода к аноду.

Схема включения TL 431

В зависимости от рабочего напряжения устройства схема подключения будет состоять из одноступенчатого преобразователя и расширителя (для устройств 2,48 В.) или модулятора небольшой ёмкости (для устройств 3.3 В). А также чтобы снизить риск короткого замыкания, в схему устанавливается предохранитель, как правило, за стабилитроном. На физическое подключение оказывает влияние форм-фактор устройства, в котором будет находиться схема TL 431, и условия окружающей среды (в основном температура).

Стабилизатор на основе TL 431

Простейшим стабилизатором на основе TL 431 является параметрический стабилизатор. Для этого в схему нужно включить два резистора R 1, R 2 через которые можно задавать выходное напряжение для TL 431 по формуле: U вых= Vref (1 + R 1/ R 2). Как видно из формулы здесь напряжение на выходе будет прямо пропорционально отношению R 1 к R 2. Интегральная схема будет держать напряжение на уровне 2,5 В. Для резистора R 1 выходное значение рассчитывается так: R 1= R 2 (U вых/ Vref – 1).

Эта схема стабилизатора, как правило, используется в блоках питания с фиксированным или регулируемым напряжением. Такие стабилизаторы напряжения на TL 431 можно обнаружить в принтерах, плоттерах, и промышленных блоках питания. Если необходимо высчитать напряжение для фиксированных источников питания, то используем формулу Vo = (1 + R 1/ R 2) Vref.

Временное реле

Прецизионные характеристики TL 431 позволяют использовать его не совсем по «прямому» назначению. Из-за того, что входной ток этого регулируемого стабилизатора составляет от 2 до 4 мкА, то используя данную микросхему можно собрать временное реле. Роль таймера в нём будет исполнять R1 который начнёт постепенно заряжаться после размыкания контактов S 1 C 1. Когда напряжение на выходе стабилизатора достигнет 2,5 В, транзистор DA1 будет открыт, через светодиоды оптопары PC 817 начёт проходить ток, а открытый фоторезистор замкнёт цепь.

Термостабильный стабилизатор на основе TL 431

Технические характеристики TL 431 позволяют создавать на его основе термостабильные стабилизаторы тока. В которых резистор R2 выполняет роль шунта обратной связи, на нём постоянно поддерживается значение 2,5 В. В результате значение тока на нагрузке будет рассчитываться по формуле Iн=2,5/R2.

Цоколёвка и проверка исправности TL 431

Форм-фактор TL 431 и его цоколёвка будет зависеть от производителя. Встречаются варианты в старых корпусах TO -92 и новых SOT-23. Не стоит забывать про отечественный аналог: КР142ЕН19А тоже широко распространённый на рынке. В большинстве случаев цоколёвка нанесена непосредственно на плату. Однако не все производители так поступают, и в некоторых случаях вам придётся искать информацию по пинам в техпаспорте того или иного устройства.

TL 431 является интегральной схемой и состоит из 10 транзисторов. Из-за этого проверить её мультиметром невозможно. Для проверки исправности микросхемы TL 431 нужно использовать тестовую схему. Конечно, часто нет смысла искать перегоревший элемент и проще заменить схему целиком.

Программы расчёта для TL 431

В интернете существует множество сайтов, где вы сможете скачать программы-калькуляторы для расчёта параметров напряжения и силы тока. В них можно указывать типы резисторов, конденсаторов, микросхем и прочих составных частей схемы. TL 431 калькуляторы также бывают онлайн, они по функционалу проигрывают устанавливаемым программам, но если вам нужно исключительно входные/выходные и максимальные значения схемы, то они справятся с этой задачей.

Технические характеристики

В блоках питания от сети 220В линейный стабилизатор обычно устанавливается сразу после выпрямительного диодного моста, где выполняет свою основную роль источника вторичного электропитания (ИВЭП). Рекомендуемая производителями величина входного напряжения у КРЕН8Б находится в диапазоне 14,5 … 18 В. В любом случае, должно быть на 2,5-3 В больше от опорного.

Максимальные параметры

Изготовителями заявлены следующие максимальные параметры КР142ЕН8Б, при температуре корпуса (ТК) от -45 до +70оС, если не указано иного:

  • входное напряжение (при ТК от -45 до +100оС) — до 30 В;
  • мощность рассеивания – до 1,5 Вт; до 8 Вт (c теплоотводом);
  • ток в нагрузке – до 1500 мА (c использованием теплоотвода).

Электрические параметры

Если ток в нагрузке будет более 100 мА, то рекомендуется применение теплоотвода. На практике его величина может достигать 900 мА, что на много меньше значения заявленного отдельными производителями в даташит, но вполне достаточного для большинства современных слаботочных систем. Сведения о электрических параметрах КРЕН8Б, при температуре окружающей среды +25оС, представлены в таблице ниже.

Типовое включение

Устойчивая работа электронных приборов обеспечивается стабильностью поданного на них электропитания. Отсюда и возникает потребность в его выравнивании до необходимого уровня. Превышение или снижение питающих значений недопустимо, так как приводит к неисправности в работе оборудования. Самый очевидный способ — использовать популярную отечественную микросхему из серии КР142.

КР142ЕН8Б является одним из линейных стабилизаторов указанной серии. Его типовая схема подключения очень простая и подходит для всех КР142ЕН. Она включает в себя саму КРЕНку (еще одно неофициальное название 142ЕН8Б) и пару сглаживающих конденсаторов. В даташит рекомендовано применение небольших ёмкостей с величиной 0,33 и 1,0 мкФ. Обычно используют керамические или танталовые версии.

Если для проекта выбраны алюминиевые электролитические конденсаторы, то они должны быть не менее 10 мкФ. Их лучше подсоединять как можно ближе к выводам микросхемы. Многие радиолюбители делают это навесным монтажом, спаивая ножки радиоэлементов между собой.

Независимые устройства на базе микросхемы

Эту микросхему используют в блоках питания телевизоров и компьютером. Однако на её базе можно составить независимые электрические схемы некоторыми, из которых являются:

  • стабилизатор тока;
  • звуковой индикатор.

Стабилизатор тока

Стабилизатор тока — это одна из самых простых схем, которые можно реализовать на микросхеме tl 341. Он состоит из следующих элементов:

  • источника питания;
  • сопротивления R 1, подключённого с помощью общей точки к + линии питания;
  • шунтирующего сопротивления R 2 к — линии питания;
  • транзистора, чей эмиттер подключён к — линии через резистор R 2, коллектор к выходу — линии, а база через общую точку к катоду микросхемы;
  • микросхемы tl 341, чей анод подключён к — линии с помощью общей токи, а вывод ref включён в эмиттерную цепь транзистора также с помощью общей точки.

Звуковой индикатор

Такой звуковой индикатор можно использовать для отслеживания уровня воды в какой-либо ёмкости. Датчик представляет собой электронную схему в корпусе с двумя выводными электродами, изготовленными из нержавеющей стали, один из которых расположен на 20 мм выше другого.

В момент соприкосновения выводов датчика с водой происходит снижение сопротивления и осуществляется переход tl 341 в линейный режим через резисторы R 1и R 2. Это способствует появлению автогенирации на резонансной частоте и образованию звукового сигнала.

Уровень включения сигнализатора

Ток на электроде управления, когда включается диод HL1 (Uз) задается разделителем R1, R2. Характеристики разделителя определяются по формуле:

R2=2.5хR1/(Uз – 2.5)

Для максимально точной подстройки порога включения можно вместо резистора R2 поставить подстроечный, с показателем раза в 1,5 выше, нежели получилось по расчету. Затем, когда настойка сделана, его можно поменять на постоянный резистор, его сопротивление должно равняться сопротивлению установленной части подстроечного.

Как TL431 проверить схему включения? Чтобы проконтролировать несколько уровней тока будет необходимо 3 этих сигнализатора, каждый из них настраивается на определенное напряжение. Таким способом можно сделать целую линейку шкалы и индикаторов.

Для электропитания цепи индикации, которая состоит из резистора R3 и диода HL1, можно использовать отдельный даже нестабилизированный источник питания. В данном случае контролируемый ток подается на верхний по схеме выход резистора R1, который нужно отсоединить от резистора R3. При этом подключении контролируемый ток может быть в диапазоне от 3-х, до десятков вольт.

Отличие данной схемы от предыдущей заключается в том, что диод подсоединен по-другому. Это подключение называется инверсным, так как диод включается в лишь случае, если схема закрыта. В случае, когда контролируемый ток превышает порог заданный разделителем R1, R2 схема открыта, и ток проходит через резистор R3 и выходы 3 – 2 микросхемы.

На схеме в данном случае происходит падение напряжения до 2 Вольт, которого не хватает для включения светодиода. Чтобы диод гарантированно не включился, последовательно с ним устанавливают два диода.

Если контролируемый ток будет меньше заданного разделителем R1, R2 схема закроется, ток на ее выводе будет значительно больше 2 Вольт, потому диод HL1 включится.

Если нужно проконтролировать лишь изменение тока, то индикатор можно сделать по схеме.

В данном индикаторе использован 2-хцветный диод HL1. Если контролируемый ток превышает заданное значение, включается красный диод, а если ток ниже, то зеленый. В случае если напряжение расположено вблизи этого порога, погашены оба светодиода, потому что передаточное положение стабилитрона имеет некоторую крутизну.

Если нужно отследить изменение какой-то физической величины, то R2 заменяют датчиком, который изменяет сопротивление под воздействием окружающей среды.

Условно на схеме находится одновременно несколько датчиков. Если это фототранзистор, то будет фотореле. Пока света достаточно, фототранзистор открыт, и сопротивление у него небольшое. Потому ток на управляющем выходе DA1 ниже порогового, в результате этого диод не светит.

По мере уменьшения света сопротивление фототранзистора повышается, это приводит к увеличению напряжения на управляющем выходе DA1. Если данное напряжение будет больше порогового (2,5 Вольт), то стабилитрон открывается и загорается диод.

Если подключить терморезистор, вместо фототранзистора, к входу микросхемы, к примеру, серии ММТ, то выйдет индикатор температуры: при уменьшении температуры диод будет включаться.

Порог срабатывания в любом случае задается при помощи резистора R1.

Помимо описанных световых индикаторов, на базе TL431 аналога можно сделать и звуковой индикатор. Для контроля воды, к примеру, в ванне, к схеме подсоединяется датчик из двух пластин нержавейки, которые находятся на расстоянии пары миллиметров между собой.

Если вода дойдет до датчика, то его сопротивление снижается, а микросхема с помощью R1, R2 войдет в линейный режим. Так, возникает автогенерация на резонансной частоте НА1, в этом случае произойдет звуковой сигнал.

Подводя итог, хотелось бы сказать, что все-таки основная сфера использования микросхемы TL434, естественно же, блоки питания. Но, как можно убедиться, возможности микросхемы только этой функцией абсолютно не ограничены, и можно собрать множество устройств.

Технические характеристики

Вид корпусов ТЛ431

Широкое применение получила благодаря крутости своих технических характеристик и стабильностью параметров при разных температурах. Частично функционал похож на известную LM317, только она работает на малой силе тока и предназначена для регулировки. Все особенности и типовые схемы включения указаны в datasheet на русском языке. Аналог TL431 будет отечественная КР142ЕН19 и импортная К1156ЕР5, их параметры очень похожи. Других аналогов особо не встречал.

Основные характеристики:

  1. ток на выходе до 100мА;
  2. напряжение на выходе от 2,5 до 36V;
  3. мощность 0,2W;
  4. температурный диапазон TL431C от 0° до 70°;
  5. для TL431A от -40° до +85°;
  6. цена от 28руб за 1 штуку.

Подробные характеристики и режимы работы указаны в даташите на русском в конце этой страницы или можно скачать tl431-datasheet-russian.pdf

Пример использования на плате

Стабильность параметров зависит от температуры окружающей среды, она очень стабильная, шумов на выходе мало и напряжение плавает +/- 0,005В по даташиту. Кроме бытовой модификации TL431C от 0° до 70° выпускается вариант с более широким температурным диапазоном TL431A от -40° до 85°. Выбранный вариант зависит от назначения устройства. Аналоги имеют совершенно другие температурные параметры.

Проверить исправность микросхемы мультиметром нельзя, так как она состоит из 10 транзисторов. Для этого необходимо собрать тестовую схему включения, по которой можно определить степень исправности, не всегда элемент полностью выходит из строя, может просто подгореть.

Работа TL431 совместно с датчиками

Если необходимо отслеживать
 изменение какого-нибудь физического процесса, то в этом случае
сопротивление R2 необходимо поменять на датчик, характеризующейся
изменением сопротивления вследствие внешнего воздействия.

Пример  такого модуля приведен
ниже. Для обобщения принципа работы на данной схеме отображены различные
датчики. К примеру, если в качестве датчика применить
фототранзистор, то в конечном итоге получится фотореле, реагирующее на
степень освещенности. До тех пор пока освещение велико,
сопротивление фототранзистора мало.

Вследствие этого напряжение на
управляющем контакте TL431 ниже заданного уровня, из-за этого светодиод
не горит. При уменьшении освещенности увеличивается сопротивление
фототранзистора. По этой причине увеличивается потенциал на контакте
управления стабилитрона TL431. При превышении порога срабатывания (2,5В)
HL1 загорается.

Данную схему можно использовать как
датчик влажности почвы. В этом случае вместо фототранзистора нужно
подсоединить два нержавеющих электрода, которые втыкают в землю на
небольшом расстоянии друг от друга. После высыхания почвы, сопротивление
между электродами возрастает и это приводит к срабатыванию микросхемы
TL431, светодиод загорается.

Если же  в качестве датчика
применить терморезистор, то можно сделать из данной схемы термостат.
Уровень срабатывания схемы во всех случаях устанавливается посредством
резистора R1.

Производители

Из-за своих хороших параметров, надежности и дешевизны, TL431 используется в различных технических решениях. Поэтому её производством занимаются многие зарубежных компаний. Существует даже полностью переведенный datasheet tl431 на русском от Texas Instruments (TI). А вот ссылки на некоторые даташит устройств продающихся в РФ: TI, ON Semiconductor, STMicroelectronics, Nexperia, HTC Korea, NXP Semiconductors. Есть еще изготовители этих изделий, но их трудно найти в российских магазинах. К ним относятся: Unisonic Technologies, Motorola, Fairchild Semiconductor, Diodes Incorporated, HIKE Electronics, Calogic, Sangdest Microelectronic (Nanjing), SeCoS Halbleitertechnologie GmbH, Hotchip Technology, Foshan Blue Rocket Electronics и др.

Описание

TL431 – datasheet на русском. TL431 представляет собой регулируемый стабилизатор напряжения параллельного типа (интегральный аналог стабилитрона) и предназначен для использования в качестве ИОН и регулируемого стабилитрона с гарантированной термостабильностью по сравнению с применяемым коммерческим температурным диапазоном.

Выходное напряжение может быть установлено на любом уровне от 2,495 V (VREF) до 36 V, для этого применяются два внешних резистора, которые являются делителем напряжения.

Этот стабилизатор имеет широкий диапазон рабочих токов от 1,0 мА до 100 мА с динамическим сопротивлением 0,22 Ом. Активные выходные элементы TL431 обеспечивают резкие характеристики включения, благодаря чему эта микросхема работает лучше обычных стабилитронов во многих схемах.

Погрешность опорного напряжения ± 0,4% (TL431B) позволяет отказаться от использования переменного резистора, что экономит затраты и уменьшает проблемы дрейфа и надежности.

Индикатор повышения напряжения

Работа данного индикатора организована
таким образом, что при потенциале на управляющем контакте TL431 (вывод
1) меньше 2,5В, стабилитрон TL431 заперт, через него проходит только
малый ток, обычно, менее 0,4 мА. Поскольку данной величины тока хватает
для того чтобы светодиод светился, то что бы избежать этого, нужно
просто параллельно светодиоду подсоединить сопротивление на 2…3 кОм.

В случае превышения потенциала,
поступающего на  управляющий вывод, больше 2,5 В, микросхема TL431
откроется и HL1 начнет гореть. Сопротивление R3 создает нужное
ограничение тока, протекающий через HL1 и стабилитрон TL431.
Максимальный ток проходящий через стабилитрон TL431 находится в районе
100 мА. Но у светодиода максимально допустимый ток составляет всего 20
мА. Поэтому в цепь светодиода необходимо добавить токоограничивающий
резистор R3. Его сопротивление можно рассчитать по формуле:

 R3 = (Uпит. – Uh1 – Uda)/Ih1

где  Uпит. – напряжение питания;
Uh1 – падение напряжения на светодиоде;  Uda – напряжение на
открытом TL431 (около 2 В); Ih1 – необходимый ток для светодиода
(5…15мА). Также необходимо помнить, что для стабилитрона TL431
максимально допустимое напряжение составляет 36 В.

Величина напряжения Uз при котором
срабатывает сигнализатор (светится светодиод), определяется делителем на
сопротивлениях R1 и R2. Его параметры можно подсчитать по формуле:

R2 = 2,5 х Rl/(Uз — 2,5)

Если необходимо точно выставить уровень
срабатывания, то необходимо на место сопротивления R2 установить
подстроечный резистор, с бОльшим сопротивлением. После окончания
точной настройки, данный подстроичник можно заменить на постоянный.

Иногда необходимо проверять несколько
значений напряжения. В таком случае понадобятся несколько подобных
сигнализатора на TL431 настроенных на свое напряжение.

Схемы включения

Стабилизатор LM317 зарекомендовал себя универсальной микросхемой способной стабилизировать напряжение и Амперы. За десятки лет разработаны сотни схем включения LM317T различного применения. Основное назначение, это стабилизатор напряжения в блоках питания. Для увеличения силы количества Ампер на выходе есть несколько вариантов:

  1. подключение параллельно;
  2. установка на выходе силовых транзисторов, получим до 20А;
  3. замена на мощные аналоги LM338 до 5A или LM350 до 3А.

Для построения двухполярного блока питания применяются стабилизаторы отрицательного напряжение LM337.

Считаю, что параллельное подключение не самый лучший вариант из-за разницы в характеристиках стабилизаторов. Невозможно настроить несколько штук точно на одинаковые параметры, чтобы распределить нагрузку равномерно. Благодаря разбросу, на один нагрузка всегда будет больше чем на другие. Вероятность выхода из строя нагруженного элемента выше, если он сгорит, то резко возрастёт нагрузка на другие, которые могут не выдержать её.

Чтобы не подключать параллельно, лучше использовать для силовой части DC-DC преобразователя напряжения транзисторы на выходе. Они рассчитаны на большой ток и отвод тепла у них лучше из-за больших размеров.

Современные импульсные микросхемы уступают по популярности, её простоту трудно превзойти.  Стабилизатор тока на lm317 для светодиодов прост в настройке и расчётах, в настоящее время до сих пор применяется на небольших производствах электронных блоков.

Двухполярный БП LM317 и LM337,  для получения положительного и отрицательного напряжения.

Стабилизатор тока

Представленная ниже схема это термостабильный вид токового стабилизатора. Резистор в данном случае это своеобразный шунт, который поддерживает токовое напряжение в размере 2,5 вольт. Так при пренебрегании токовой базы, можно получить ток, имеющий нагрузку Iн=2,5/R2. При формировании значения в Омах, ток будет представлен в Амперах и наоборот.

Стабилизатор тока на TL431 схема

Зарядное устройство для литиевого аккумулятора

Главным отличием зарядника от блока питания является четкое разграничение токового заряда. Следующая картинка представлена в двух ограничиваемых режимах: тока и напряжения. Пока выходное напряжение менее 4,2 вольт, осуществляется ограничение выходного тока. Как только оно достигнет этого показателя, то начнет электроток понижаться.

Следующая схема предусматривает ограничение электротока внешними транзисторами. R1 осуществляет шунтовую функцию, VT1 осуществляет открытие и закрытие второго транзистора. В этот момент напряжение в третьем падает. Ток падает и вовсе прекращается. Так осуществляется токовая стабилизация.

Обратите внимание! В момент подбора к 4,2 вольтовому уровню, функционировать начинает DA1 и осуществляет ограничение напряжения на выходе зарядника

Характеристика TL431

Этот операционный усилитель работает с напряжением от 2,5 до 36В. Ток работы усилителя колеблется от 1А до 100 мА, но есть один важный нюанс: если требуется стабильность в работе стабилизатора, то сила тока не должна опускаться ниже 5 мА на входе. У тл431 имеется величина опорного напряжения, которая определяется по 6-й букве в маркировке:

  • Если буквы нет, то точность равняется — 2%.
  • Буква А в маркировке свидетельствует о — 1% точности.
  • Буква В говорит о — 0,5% точности.

Более развернутая техническая характеристика изображена на рис.4

В описании tl431A можно увидеть, что величина тока довольна мала и составляет заявленные 100мА, а величина мощности, которую рассеивают эти корпуса, не превышает сотен милливатт. Этого мало. Если предстоит работать с более серьезными токами, то будет правильнее воспользоваться мощными транзисторами с улучшенными параметрами.

Видео

Раз дело «выгорело» и пробник теперь есть, осталось помнить об этом и суметь в случае необходимости быстро его идентифицировать из числа других в таких, же корпусах, что лежат в предназначенной для этого коробке. А ещё нужно помнить, что рабочее напряжение пробника 12 вольт, что при не подключённом TL431 мультиметр будет показывать напряжение 10 вольт, при подключённом 5 вольт, а при нажатой кнопке 2,5 вольта и вдобавок правильно установить проверяемый компонент в панельку.  А можно особо и не запоминать, а оформить соответствующим образом лицевую панель. Автор проекта: Babay iz Barnaula.

Схема включения стабилитрона TL431

Теперь давайте посмотрим, как этот прибор может быть использован в практических схемах. Схема ниже показывает, как можно использовать TL431 в роли обычного регулятора напряжения:

Приведенный выше рисунок показывает, как с помощью всего пары резисторов и TL431 получить регулятор, работающий в диапазоне 2,5…36 вольт. R1 представляет собой переменный резистор, который используется для регулировки выходного напряжения.

Следующая формула справедлива для вычисления сопротивлений резисторов, в случае если мы хотим получить какое-то фиксированное напряжение.

Vo = (1 + R1/R2)Vref

При совместном применении стабилизаторов серии 78xx (7805,7808,7812..) и TL431 можно использовать следующую схему:

TL431 катод соединен с общим выводом 78xx. Выход 78xx подключен к одной из точки резисторного делителя напряжения, который определяет выходное напряжение.

Вышеуказанные схемы использования TL431 ограничены выходным током 100 мА максимум.

Для получения более высокого выходного тока может быть использована следующая схема.

В приведенной выше схеме большинство компонентов схожи с обычным регулятором, приведенным выше, за исключением того, что здесь катод подключен к плюсу через резистор и к их точке соединения подсоединена база буферного транзистора. Выходной ток регулятора будет зависеть от мощности данного транзистора.

Включение устройства на 3.3 В

У стабилитрона TL431 схема включения на 3.3В подразумевает использование одноступенчатого преобразователя. Резисторы для передачи импульса применяются селективного типа. Еще у стабилитрона TL431 схема включения 3.3 вольта имеет модулятор небольшой емкости. Чтобы снизить риск коротких замыканий, применяют предохранители. Устанавливаются они, как правило, за стабилитронами.

Для усиления сигнала не обойтись без фильтров. В среднем пороговое напряжение колеблется в районе 5 Вт. Рабочий ток системы составляет не более 3.5 А. Как правило, точность стабилизации не превышает 3%

Также важно отметить, что подключение стабилитрона может осуществляться через векторный переходник. В этом случае транзистор подбирается резонного типа

В среднем емкость модулятора должна составлять 4.2 пФ. Тиристоры используются как фазового, так и открыто типа. Чтобы увеличить проводимость тока, необходимы триггеры.

На сегодняшний день указанные элементы оснащаются усилителями разной мощности. В среднем пороговое напряжение в системе достигается 3.1 Вт. Показатель рабочего тока колеблется в районе 3.5 А

Также важно учитывать выходное сопротивление. Представленный параметр обязан составлять не более 80 Ом

Простое зарядное устройство для литиевого аккумулятора.

Главное отличие зарядного устройства от блока питания – четкое ограничение зарядного тока. Следующая схема имеет два режима ограничения:

по току;

по напряжению;

Пока напряжение на выходе меньше 4,2 В ограничивается выходной ток, при достижении напряжением величины 4,2 В начинает ограничиватся напряжение и ток заряда снижается.
На следующей схеме ограничение тока осуществляют транзисторы VT1, VT2 и резисторы R1-R3. Резистор R1 выполняет функцию шунта, когда напряжение на нем превышает 0,6 В (порог открывания VT1), транзистор VT1 открывается и закрывает транзистор VT2. Из-за этого падает напряжение на базе VT3 он начинает закрываться и следовательно снижается выходное напряжение, а это ведет к снижению выходного тока. Таким образом работает обратная связь по току и его стабилизация. Когда напряжение подбирается к уровню 4,2 В в работу начинает вступать DA1 и ограничивать напряжение на выходе зарядного устройства.

А теперь список номиналов компонентов схемы:

  • DA1 – TL431C;
  • R1 – 2,2 Ом;
  • R2 – 470 Ом;
  • R3 – 100 кОм;
  • R4 – 15 кОм;
  • R5 – 22 кОм;
  • R6 – 680 Ом (нужен для подстройки выходного напряжения);
  • VT1, VT2 – BC857B;
  • VT3 – BCP68-25;
  • VT4 – BSS138.

Описание работы

Работа микросхемы lm324n основана на функционировании внутри неё одновременно четырех ОУ. Все усилители запитываеются от одного источника питания, имеют инвертирующий, не инвертирующий входы и одни выход. Источник питания может быть однополярным или двухполярным.

Рассмотрим внутреннюю схему одного из операционных усилителей c однополярным питанием. Возьмем её прямо из даташит на LM324.

Функционально каждый операционный усилитель состоит из: дифкаскада, а так же каскадов промежуточного и выходного усиления.

Дифференциальный каскад, выполняет функции усиления разности подаваемых на вход напряжений (V+ и V) и нейтрализации синфазных сигналов. Обеспечивает высокое сопротивление на входе.

Промежуточный каскад обеспечивает балансировку операционника (установку на выходе нулевого напряжения при замкнутых входах), согласование сопротивлений дифференциального и выходного каскадов, а так же частотную коррекцию (защиту от самовозбуждения).

Выходной каскад обеспечивает низкое выходное сопротивление, требуемую мощность в нагрузке, ограничение тока и защиту при коротком замыкании.

Маркировка

Серия LM основана на интегральных микросхемах производства National Semiconductor. Приставка LM изначально означала linear monolithic (линейный, монолитный) и применялась для обозначения усилителей общего назначения (General Purpose) к которым не предъявлялись жестких требований. Цифры “324” указывают на серийный номер микросхемы. «-N», в конце серийника, обозначаются устройства, приобретенные Texas Instruments у National Semiconductor. В сентябре 2011 году National Semiconductor была передана Texas Instruments, которая не изменила приставку LM в своей продукции. Поэтому в настоящее время маркировка LM является кодом производителя Texas Instruments, но её широко используют другие производители при выпуске своих аналогов этой микросхемы.

Следует также отметить, что фирмы-производители постоянно совершенствуют свою продукцию. В настоящее время появились превосходящие по ряду функций модификации, например:  LM324K, LM324KA с внутренней защитой от электрического разряда (HBM ESD); микромощные  LP324  с током потребления 21 мкА; низковольтные LMV324, с напряжением питания от 2,7 В до 5,5 В; LPV324, изготавливаемые по технологии BiCMOS  и током потребления 9 мкА и др. Усилители с символом «А» в маркировке, например “ LM324A-N ”,  будут иметь лучшие характеристики по VIO по сравнению c другими (без «A»).

Модели AC

Для дипольных инверторов часто используются чери АС стабилитроны TL431. Как проверить работоспособность подсоединенного элемента? Сделать это можно при помощи обычного тестера. Параметр выходного сопротивления обязан составлять не более 70 Ом

Также важно отметить, что устройства этой серии включаются через векторный преобразователь

В данном случае скалярные модификации не подходят. Во многом это связано с низким порогом проводимости тока

Также важно отметить, что показатель номинального напряжения не превышает 4 Вт. Рабочий ток в цепи поддерживается на уровне 2 А. Для понижения тепловых потерь используются различные тиристоры

На сегодняшний день выпускаются расширительные и фазовые модификации

Для понижения тепловых потерь используются различные тиристоры. На сегодняшний день выпускаются расширительные и фазовые модификации.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector