Как защитить металл от коррозии?

Содержание:

6 Способы обработки коррозионной среды

На производственных предприятиях с коррозией можно с успехом справляться посредством модификации состава агрессивной атмосферы, в которой работают металлические детали и конструкции. Существует два варианта снижения агрессивности среды:

  • введение в нее ингибиторов (замедлителей) коррозии;
  • удаление из среды тех соединений, которые являются причиной возникновения коррозии.

Ингибиторы, как правило, используются в системах охлаждения, цистернах, ваннах для выполнения травильных операций, различных резервуарах и прочих системах, в коих коррозионная среда имеет примерно постоянный объем. Замедлители подразделяют на:

  • органические, неорганические, летучие;
  • анодные, катодные, смешанные;
  • работающие в щелочной, кислой, нейтральной среде.

Ниже указаны самые известные и часто используемые ингибиторы коррозии, которые отвечают требованиям СНиП для разных производственных объектов:

  • бикарбонат кальция;
  • бораты и полифосфаты;
  • бихроматы и хроматы;
  • нитриты;
  • органические замедлители (многоосновные спирты, тиолы, амины, аминоспирты, аминокислоты с поликарбоксильными свойствами, летучие составы «ИФХАН-8А», «ВНХ-Л-20», «НДА»).

А вот уменьшить агрессивность коррозионной атмосферы можно такими методами:

  • вакуумированием;
  • нейтрализацией кислот при помощи едкого натра либо извести (гашеной);
  • деаэрацией с целью удаления из кислорода.

Защита трубопроводов от воздействия низких температур

Большое количество магистральных трубопроводов прокладывается в месте, где температура окружающей среды может достигать минусовых температур. Даже незначительное замораживание труб и транспортируемых веществ может губительно сказаться не только на проходящем веществе, но и на общем состоянии конструкции трубопровода.

Для предотвращения такого состояния, уже на этапе устройства труб производятся защитные мероприятия:

  • трубы стараются укладывать ниже глубины промерзания грунта;
  • утепление с помощью теплоизоляционных материалов;
  • засыпку трубопроводов выполняют из природных материалов с низкой теплопроводной способностью, например, керамзит;
  • устройство воздушной прослойки между грунтом и магистралью, которое обеспечивается установкой трубопроводов в специальных закрытых коробах.

Антикоррозийная защита трубопроводов при переменных температурах

Как было упомянуто ранее, при замораживании происходит расширение материала, что разрушает поверхность трубопровода и вызывает коррозийные процессы в конструкции.

Чтобы избежать таких явлений используют теплоизоляционные материалы, которые помогают избежать замораживания поверхности трубопровода и его содержимого и обеспечить защиту металлических труб от коррозии в грунте — тепловых путепроводов, газопроводов, труб для перекачки нефти и нефтепродуктов и др.

К используемым теплоизоляционным материалам предъявляют требования:

  • Предотвращение промерзания, образования конденсата;
  • Увеличение срока службы изделия;
  • Устойчивость к микроорганизмам и насекомым;
  • Низкая пожароопасность;
  • Влагостойкость.

Сегодня рынок теплоизоляционных материалов очень обширный. Можно выбрать любую антикоррозийную защиту стальных труб в земле — вещество, форму, способ утепления и др. Лучше всего подобрать материал именно для вашей конструкции смогут специалисты нашего предприятия, имеющие обширным опытом работы в этой сфере.

Основные теплоизоляционные материалы для защиты труб

  • Стекловата;
  • Минераловатные материалы;
  • Базальтовое волокно;
  • Вулканитовое стекло;
  • Перлитовые материалы;
  • Пенополистирольные;
  • Каучуковые вещества;
  • Полиэтиленовые материалы.

Примеры теплоизоляции труб различными материалами представлены на картинках:

Теплоизоляция из полиэтилена и пенополиуретана

Теплоизоляция с помощью монтажной пены

Теплоизоляция из базальтового волокна

Виды коррозии

В зависимости от типа металла и окислительно-восстановительной реакции, происходящей с ним, коррозия может быть:

  • равномерной или неравномерной;
  • местной и точечной (отдельные участки почему-либо вступили в реакцию, а другие – нет);
  • язвенной, известной еще как питтинг;
  • подповерхностной;
  • растрескивающейся;
  • межкристаллической, возникающая вдоль границ кристалла металла.

Также в зависимости от того, какие именно внешние факторы воздействуют на поверхность, коррозия бывает химической и электрохимической. Химическая коррозия происходит в результате некоторых реакций под влиянием химических взаимодействий, но без участия электрического тока, и может быть присуща даже нефти и газу. Электрохимическая отличается определенными процессами, она более сложная, чем химическая.

На видео: коррозия металлов.

Электрохимическая защита

Достаточно результативный способ защиты металлоконструкций от электрохимической коррозии. Иногда воссоздать лакокрасочную оболочку или защитное оберточное покрытие просто невозможно. Вот в таких случаях и уместно применение электрохимической защиты.

  • Используется метод в ситуациях, когда потенциал свободной коррозии пребывает в области усиленного распада основного металла или перепассивации. То есть, когда металлоконструкция интенсивно разрушается.
  • При электрохимической защите к изделию из металла подключают постоянный электрический ток. Благодаря ему на поверхности металлической конструкции образуется катодная поляризация электродов микрогальванических пар и анодные области становятся катодными. А вследствие негативного влияния коррозии разрушается не металл, а анод.
  • Электрохимическая защита может быть анодной или катодной: это будет зависеть от того, в какую сторону сдвинется потенциал металла (в положительную или в отрицательную).

Как обеспечить протекторную защиту

Покрытие труб специальными составами — это задача не только производителя, в процессе эксплуатации конструкции обеспечение защитных свойств тоже должно выполняться. Всего существует несколько способов защиты металла от воздействия агрессивных сред:

  • химическая обработка;
  • покрытие стенок специальными составами;
  • защита от блуждающих токов;
  • подведение катода или анода.

О пассивных и активных способах

Антикоррозионная защита — это целый комплекс мероприятий, проводимых предприятиями. Пассивные методы защиты предполагают выполнение следующих работ:

  • На стадии монтажа между трубопроводом и грунтом оставляют воздушный зазор, препятствующий попаданию грунтовой воды, в том числе в составе с кислотными и щелочными примесями.
  • Покрытие специализированными составами, назначение которых распространяется от негативных воздействий почвы.
  • Обработка металла химическими составами, с образованием тонкой пленки.

Активные способы защиты предусматривают использование тока и обмен ионов на основе химических реакций, за счет чего обеспечивается:

  • Защита подземных трубопроводов от коррозии созданием электродренажной системы для изоляции трубопроводного транспорта от блуждающих токов.
  • Защита анодом от разрушения металлических поверхностей.
  • Катодная защита для увеличения сопротивления металлических оснований.

Только с учетом всех способов, препятствующих образованию ржавчины на металле, будет увеличен срок службы конструкций. Антикоррозионная защита трубопроводов должна выполняться комплексно.

На видео: защита трубопроводов и кабельных линий от электрической коррозии.

https://youtube.com/watch?v=l_pU59HIdlo

О достоинствах применения протекторов

Защита труб этим способом производится с добавлением компонента — ингибитора. Это материал с отрицательным электрическим зарядом. Под воздействием воздушных масс он растворяется, а конструкция остается целой и не подвергается ржавлению. Протекторная защита от коррозии применяется для продления срока службы строительных конструкций, систем отопления и водоснабжения, а также магистрального и промыслового трубопроводного транспорта.

Применение электрохимической защиты позволяет устранить причины многих видов коррозии. Такая антикоррозийная защита трубопроводов – неплохое решение даже для предприятий, не имеющих финансовых возможностей по обеспечению полноценной защиты от неконтролируемого процесса.

Для обеспечения грамотного подхода следует:

  • Протекторы, изготовленные из алюминия, использовать в средах морских вод и прибрежных шельфах.
  • В средах с небольшой электропроводностью использовать магниевые протекторы. Но, опять же, они не подходят для обработки внутреннего покрытия резервуаров, нефтяных отстойников в связи с тем, что обладают достаточно низкой взрывопожароопасностью.
  • Использовать протекторы для защиты от сред пресной воды.
  • Проекторы, выполненные на основе цинка, являются полностью безопасными, их можно применять на пожаро- и взрывоопасных производствах.

Протекторной антикоррозионной защите можно отнести следующий ряд преимуществ:

  • недостаток денежных средств и производственных мощностей у предприятия не будет препятствием ее выполнению;
  • возможность защиты конструкций небольших размеров;
  • если трубы покрыты теплоизоляционными материалами, то такая защита приемлема.

Используемые материалы и цели применения

Противокоррозионная защита необходима для всех металлических оснований. Данный вид противостояния от ржавчины широко используется для обработки танкеров, так как эти суда наиболее подвержены воздействию воды, имеющей в составе агрессивные компоненты. Даже специальная окраска не справляется с решением этой проблемы.

Наиболее рациональным выбором для покрытия стальных конструкций будет использование протекторов с отрицательным потенциалом. При изготовлении таких устройств применяется магний, цинк или алюминий. Большая разница потенциалов металла и стальных поверхностей способствует увеличению спектра защитного действия, в результате различные виды коррозии устраняются.

Пассивная защита требуется стальным покрытиям и изделиям из металла. Сущность метода заключается в применении гальванических анодов, обеспечивающих противодействие подземных трубопроводов коррозии. При произведении расчета для данной установки, необходимо учитывать следующие показатели:

  • параметры силы тока;
  • сопротивление от перепадов напряжения;
  • характеристики степени защиты, применяемые для 1 км трубопровода;
  • показатель расстояния между элементами защиты.

2 метода защиты от коррозии металлов

Коррозия в переводе с латинского означает «разъедание», это легко объясняет сущность данного понятия. С научной точки зрения коррозия является процессом самопроизвольного разрушения металлов вследствие химических и физико-химических взаимодействий с окружающей средой.

Причиной для начала данного процесса служит отсутствие термодинамической устойчивости того или иного металла при воздействии веществ, которые находятся в контактирующей с ним среде.

Сегодня проблема антикоррозийной защиты различных видов конструкций, продукции и материалов достаточно актуальна для многих стран мира. Особенно страдают промышленно развитые страны, ведь коррозия металлов причиняет весомый ущерб экономике этих государств.

Поэтому данный вопрос занимает довольно большую роль не только в быту, но и в государственных масштабах, ведь его решение должно быть основано на необходимости сохранения природных ресурсов, защиты окружающей среди и, конечно же, рационального использования и хранения различного рода металлических конструкций в производстве.

Если нет времени ждать сантехника, значит необходимо принимать решение по самостоятельной чистке раковины.

Также узнайте, как бороться с засором в унитазе.

Коррозия имеет широкое распространение и разнообразие тех условий и сред, в которых она может начаться. Поэтому конкретной классификации различных случаев коррозии пока нет.

В таблице представлена обширная типизация коррозии, существующая на сегодняшний день.

Условие/среда, способствующая протеканию процесса коррозии Виды коррозии
По типу агрессивных сред газовая коррозия
коррозия в неэлектролитах
коррозия в электролитах
атмосферная коррозия
подземная коррозия
коррозия по причине воздействия блуждающих токов
биокоррозия
По условиям протекания процесса коррозии контактная коррозия
щелевая коррозия
коррозия при полном погружении
коррозия при частичном погружении
коррозия при попеременном погружении
межкристаллическая коррозия
коррозия при трении
коррозия под напряжением
По характеру разрушения сплошная коррозия равномернаякоррозия
неравномернаякоррозия
избирательнаякоррозия
местная коррозия язвеннаякоррозия
точечнаякоррозия
коррозия пятнами
сквозная коррозия
межкристаллитнаякоррозия
По механизму протекания процесса коррозии химическая
электрохимическая

Огромное количество видов коррозии повлекло за собой появление столь же большого количества методов и приемов борьбы с каждым из них. Но вопрос этот не закрыт и продолжаются работы по созданию новых методов, которые будут более действенными.

Особенности антикоррозионных составов

В местах скола краски видна ржавчина, а на осях покрытых смазкой коррозии нет

Что такое ингибиторы коррозии? Это такие вещества и элементы, которые, присутствуя в среде, подверженной опасному влиянию коррозии, в состоянии уменьшать и в целом останавливать коррозионное воздействие на металл. Ингибитор коррозии может представлять собой как одно химическое соединение, так и быть смесью многих.

Ингибиторами наиболее часто являются ПАВ вещества, а также всевозможная органика. При влиянии на изделие они еще сильнее улучшают защитные характеристики оксидной пленки на металле. По этой причине вы можете сделать вывод, что присутствие кислорода в среде благоприятствует подъему защитного эффекта от воздействия коррозии. Однако, если оксидная пленка имеет слабую устойчивость — ухудшается адсорбция ингибитора на верхнем слое металла.

  • Ингибитор солеотложений ИОМС-1 (раствор)г 200 руб/кг. Макрофлекс.
  • Ингибитор коррозии Protectogen(протектоген). C Aqua.
  • Комплексонат – раствор цинкового комплекса. Эктоскейл.
  • ГАЛАН. Протектор. Ингибитор коррозии (5 л). Защищает от коррозии трубопроводы, радиаторы и прочие системы отопления.

Катодная электрохимическая защита

Самым популярным методом является катодная защита – это метод подразумевает сдвиг потенциала корпуса в отрицательную сторону.

Принцип катодной защиты заключается в прохождении тока, вызванного разницей потенциалов между металлом кузовных деталей машины и средой вокруг нее. Более активный материал при этом окисляется, менее активный — восстанавливается.

Электрозащита выполняется с помощью прибора, подключенного к источнику постоянного тока, – этот тип принято называть электронной защитой.

Для этого нужен электронный модуль, который можно приобрести либо изготовить самостоятельно. Он монтируется в салоне автомобиля и подсоединяется к бортовой сети.

Гаражное хранение – отличный способ защиты

Обезопасить автомашины от ржавения, которые находятся в неподвижном состоянии, можно в гараже, поскольку он предохраняет автомобиль от негативного воздействия. Достаточно подключить кузов к одной из металлических стен. Использование металлического гаража в качестве анода – самый простой и доступный метод электрохимической защиты. Если гаража нет, можно также использовать контур заземления на открытой стоянке.

Если в гараже пол выполнен из металла или есть открытые участки с железной арматурой, то днище машины тоже будет защищено. Летом металлические гаражи создают парниковый эффект, но если выполнить электрохимическую защиту, то он не будет разрушать металлические поверхности, а, наоборот, будет защищать кузов от коррозии.

Для эффективной работы любой из систем, изучите принцип действия электрохимической защиты, придерживайтесь рекомендаций, следуйте инструкциям и тогда ваш автомобиль получит хороший щит, который обеспечит внешний вид машине и отличное настроение ее владельцу.

Катодная защита от коррозии для движущегося автомобиля

Как своими руками защитить движущуюся машину? Автомобиль в этом случае выступает в качестве катода, а в роли анода водители используют заземление, как защиту автомобиля – резиновый «хвост» или защитные электроды.

«Хвост» — простейший метод профилактики коррозии. С виду это резиновая полоска с вставленными металлизированными элементами. Как правило, ее крепят к задней части машины таким образом, чтобы она свисала и создавала разницу потенциалов между кузовом автомобиля и покрытием дороги.

Виды коррозии металлов

Учитывая сложность процесса и его многообразие, классификация видов коррозии ведется по нескольким группам признаков:

  • механизм – химический или электрохимический;
  • окружающая среда. Выделяют общую газовую, атмосферную (с наиболее активным действием кислорода), электролитную и неэлектролитную, подземную (иначе почвенную), биологическую среды. Также агрессивной средой считаются блуждающие токи;
  • условия протекания. С погружением, без погружения и частичным погружением в среду, с непосредственным контактом, через щель, в результате трения. Выделяют межкристаллитное воздействие (по границам кристаллов и зон), коррозию под постоянным или переменным электрическим напряжением;
  • степень разрушения объекта. Коррозия может быть сплошной, захватывающей всю поверхность объекта (равномерной, неравномерной, избирательной) или локальной. В этом случае отмечают пятна, язвы, точки и сквозные поражения, а также межкристаллитный вариант.

Несколько примеров для лучшего понимания сути и разновидностей коррозии.

  • Повреждение днища автомобиля. Считается химическим, с активным действием влаги и атмосферного кислорода, активных газов выхлопа, дорожной «химии» и частично моющих средств при помывке авто. В случае пробоя электропроводки на днище могут воздействовать слабые токи, в этом случае коррозия будет уже электрохимической и заметно ускорится.

  • Ржавление гвоздей и другого крепежа из сплавов железа в строительных конструкциях. Химический процесс, связан с атмосферной влагой и кислородом. При повышенной кислотности материала, в котором установлен крепеж, или увеличении кислотности атмосферных осадков и газовой среды ржавление усиливается и проходит быстрее.

  • Сваи в морской воде. Активное воздействие агрессивного электролита (которым является морская вода) приводит к быстрому разрушению металлических конструкций. Скорость коррозии усиливают перепады температуры и механическое воздействие волн.

  • Поверхностное разрушение сантехнических устройств и радиаторов отопления. Это характерный пример электрохимической коррозии, где в роли электролита выступает водопроводная вода (теплоноситель в отопительной системе) и моющие средства для сантехники.

Последний вариант (на фото) – это именно коррозия, но не ржавление, поскольку сплав, как правило, создается не на основе железа.

Способы защиты металлов от коррозии

Предотвращение начала или активного протекания коррозии – более удачный способ избавиться от проблем с разрушением металлов, чем постоянная замена или восстановление деталей. Поэтому все производители металлических изделий уделяют максимум внимания разработке и совершенствованию способов защиты своей продукции от ржавления.

На данный момент есть четыре основных направления:

  • изменение свойств металла введением добавок. По этому принципу изготавливаются нержавеющие стали – добавки хрома (12%) повышают стойкость сплава к коррозии до почти полной невосприимчивости в нормальных бытовых условиях. Изменения температуры и состава окружающей среды снижают стойкость нержавеющей стали к коррозии;

  • использование защитных покрытий. Применяются различные (в чистом виде и комбинациях) лако-красочные, эмалевые, полимерные составы. Также – и с большим успехом – используется поверхностное нанесение менее активных химически металлов (оцинковывание, хромирование, никелирование, золочение);
  • применение небольших элементов (пластинок, заклепок) из более активных металлов для сохранения основного объема и массы изделия – коррозии в этом случае подвергаются именно добавленные элементы. Отдельно можно выделить создание слабого тока в самом изделии для нейтрализации тока электрохимической коррозии. Применение этого способа ограничено определенными условиями эксплуатации;
  • введение ингибиторов – веществ, угнетающих процесс коррозии – в окружающую изделие среду.

Последний метод требует отдельного рассмотрения.

Протекторная защита от коррозии металлических изделий

Протекторная защита — это один из возможных вариантов защиты конструкционных материалов трубопроводов от коррозии. Применяется, прежде всего, на газопроводах и других магистралях.

Сущность протекторной защиты

Протекторная защита представляет собой использование специального вещества — ингибитора, который является металлом с повышенными электроотрицательными качествами.

Под воздействием воздуха протектор растворяется, в результате чего основной металл сохраняется, несмотря на воздействие коррозийных факторов.

Протекторная защита — одна из разновидностей катодного электрохимического метода.

Данный вариант антикоррозийных покрытий особенно часто применяется, когда предприятие стеснено в своих возможностях по организации катодной защиты от коррозийных процессов электрохимического характера. Например, если финансовые или технологические возможности предприятия не позволяют построить линии электропередач.

Протектор-ингибитор эффективен, когда показатель переходного сопротивления между защищаемым объектом, и средой вокруг него, не является значительной.

Высокая результативность протектора возможна лишь на определенной дистанции. Чтобы выявить это расстояние, применяется определение радиуса антикоррозийного действия применяемого протектора.

Данное понятие показывает максимальное удаление защищающего металла от охраняемой поверхности.

Суть коррозийных процессов сводится к тому, что наименее активный метал в период взаимодействия, привлекает к собственным ионам электроны более активного металла. Таким образом, в одно и то же время осуществляется сразу два процесса:

  • восстановительные процессы в металле с меньшей активностью (в катоде);
  • окислительные процессы металла анода с минимальной активностью, за счет чего и обеспечивается защита трубопровода (или другой стальной конструкции) от коррозии.

Спустя некоторое время эффективность протектора падает (в связи с потерей контакта с защищаемым металлом или же из-за растворения защищающего компонента). По этой причине возникает потребность в замене протектора.

1 Антикоррозионная защита – зачем она нужна и ее классификация

Под коррозией понимают разрушение поверхностных слоев конструкций из стали и чугуна в результате электрохимического и химического воздействия. Она просто-напросто портит металл, разъедает его, делая тем самым непригодным для последующей эксплуатации.

Специалисты доказали, что каждый год примерно 10 процентов от всего добытого металла на Земле тратится на покрытие потерь (обратите внимание – они считаются безвозвратными) от коррозии, ведущей к распылению металла, а также к выходу из строя и порче металлических изделий. Стальные и чугунные конструкции на первых этапах воздействия коррозии снижают свою герметичность, прочность, электро- и теплопроводность, пластичность, отражательный потенциал и ряд других важных характеристик

Впоследствии конструкции становятся и вовсе непригодными для эксплуатации

Стальные и чугунные конструкции на первых этапах воздействия коррозии снижают свою герметичность, прочность, электро- и теплопроводность, пластичность, отражательный потенциал и ряд других важных характеристик. Впоследствии конструкции становятся и вовсе непригодными для эксплуатации.

Кроме того, коррозионные явления — причина производственных и бытовых аварий, а иногда и настоящих экологических катастроф. Из проржавевших и прохудившихся трубопроводов для нефти и газа в любой момент может хлынуть поток опасных для жизни человека и для природы соединений. Учитывая все вышесказанное, любой может понять то, насколько важна качественная и эффективная защита от коррозии с применением традиционных и новейших средств и методов.

Полностью избежать коррозии, когда речь идет о стальных сплавах и металлах, невозможно. А вот задержать и снизить негативные последствия ржавления вполне реально. Для этих целей нынче существует множество антикоррозионных средств и технологий.

Все современные методы борьбы с коррозией можно разделить на несколько групп:

Плюсы и минусы различных протекторов

На основе протекторов строится защита строительных конструкций от коррозии, трубопроводов разного типа (распределительных, магистральных, промысловых). При этом использовать их нужно грамотно:

  • использование алюминиевых протекторов целесообразно для того, чтобы защитить конструкции и сооружения в морской воде и прибрежном шельфе;
  • магниевые подходят для использования в слабоэлектропроводной среде, где алюминиевые и цинковые протекторы показывают низкую эффективность. Но их нельзя использовать, если требуется защитить внутренние поверхности танкеров, резервуаров, отстойников для нефти, так как магниевые протекторы отличаются повышенной взрыво- и пожароопасностью. В идеале проекторы на основе этого элемента нужно использовать для внешней защиты конструкций, которые используются в пресной среде;
  • цинковые протекторы полностью безопасны, поэтому их можно использовать на любых объектах, даже если на них высокий уровень пожарной опасности.

Методы пассивной защиты трубопроводов

Пассивная защита трубопроводов от коррозии – популярный метод, который применяется для подземных магистралей.

Существует три разновидности такой защиты:

  • особый способ укладки. Защита подземных трубопроводов от коррозии производится на стадии монтажа системы. Между почвой и металлической поверхностью трубы оставляется воздушный зазор, который препятствует воздействию грунтовых вод, солей и щелочей, которые находятся в земле. Для большей эффективности используют дополнительные методы защиты;
  • нанесение антикоррозийных покрытий. Внешняя поверхность труб окрашивается составами, которые не разрушаются от воздействия почвенных солей и щелочей. Яркий пример – грунтовка труб и последующая их покраска алкидными эмалями или нанесение мастики на металлическую поверхность;
  • обработка специальными химическими составами. Трубопровод покрывают тонким слоем фосфатов, которые образуют защитную пленку на поверхности изделий.

2 Катодная электрозащита – как она действует?

Механизм процесса, если разобраться в нем, достаточно прост. Погруженный в электролитический раствор металл является системой с большим количеством электронов, которая включает в себя разделенные в пространстве катодные и анодные зоны, электрически замкнутые друг с другом. Подобное положение вещей обусловлено гетерогенной электрохимической структурой металлических изделий (например, подземных трубопроводов). Коррозионные проявления образуются на анодных областях металла из-за его ионизации.

При присоединении материала с большим потенциалом (отрицательным) к основному металлу, находящемуся в электролите, наблюдается образование общего катода за счет процесса поляризации катодных и анодных зон. Под большим потенциалом при этом понимают такую его величину, которая превосходит потенциал анодной реакции. В сформированной гальванопаре материал с малым потенциалом электрода растворяется, что приводит к приостановке коррозии (так как ионы предохраняемого металлического изделия не могут попадать в раствор).

Требуемый для защиты кузова автомобиля, подземных резервуаров и трубопроводов, днищ кораблей электрический ток может поступать от внешнего источника, а не только от функционирования микрогальванической пары. В подобной ситуации предохраняемая конструкция подключается к «минусу» источника электротока. Анод же, сделанный из материалов с малой степенью растворимости, подсоединяют к «плюсу» системы.

Если ток получают только от гальванопар, говорят о процессе с расходуемыми анодами. А при использовании тока от внешнего источника речь идет уже о защите трубопроводов, деталей транспортных и водных средств при помощи наложенного тока. Применение любой из этих схем обеспечивает качественную защиту объекта от общего коррозионного распада и от ряда особых его вариантов (селективная, питтинговая, растрескивающая, межкристаллитная, контактная виды коррозии).

Пассивная защита оборудования от коррозии

Этот способ используется для внешней защиты металлических поверхностей и включает три направления:

  • нанесение антикоррозийных покрытий. Внешняя защита строительных конструкций и оборудования от коррозии осуществляется путем покраски поверхности мастиками и эмалями, которые служат протекторным слоем между внешней средой и металлом. В качестве альтернативы используют электрохимическое нанесение на поверхность углеродистой стали слоя никеля, цинка или хрома;
  • способ укладки трубопроводов. При монтаже магистралей используют метод установки с воздушным зазором, который играет роль изолятора, предотвращая образование ржавчины на поверхности труб. Этот способ актуален для подземной прокладки коммуникаций;
  • обработка растворами, которые не взаимодействуют с водой. На поверхность металлов наносится слой фосфатов, которые образуют защитную пленку, резко замедляя процесс коррозии.

Оцинковка кузова

Оцинковку кузова выполняет завод-изготовитель. Как правило, кузовные элементы будущей машины погружаются в емкость с расплавленным цинком. Толщина металла, который осядет на поверхности, не больше 2 мкм. Здесь действует принцип, основанный на электрохимических процессах, а именно цинк отбирает окислительные процессы на себя.

Вообще, оцинковка может выполняться тремя способами:

  1. Термический, о котором говорилось выше.
  2. Гальванический способ. Деталь погружают в электролит и цинк налипает на деталь.
  3. Холодный способ. Деталь окрашивают цинкосодержащим составом.

Цинковое покрытие имеет один недостаток – все дело в микропорах, которые есть в цинке.

Защита машины – процесс обязательный и автовладелец должен это понимать. Все перечисленные способы хороши и действенны, но катодный способ все же намного лучше остальных.

Основные типы коррозии

Говоря о механизме коррозийного процесса можно заметить 2 главных типа коррозии: химическую и электрохимическую.

Химическая — это явственный итог прохождения реакций, во время которых, после уничтожения металлической связи, части металла и все атомы, которые входят в окислители, создают собой крепкую связь. Электроток между различными частями поверхности металл не может возникнуть. Данная разновидность коррозии может быть присуща химическим средам, которые не в состоянии передавать электроток. Сюда относятся газы и неэлектролиты.

Важно помнить, что на скорость коррозии влияют также причины коррозии. Электрохимическая коррозия представляет процесс деградации металлов

Этот процесс идет вместе с возникновением в системе электричества.

Классификация коррозии по значению протекания самого процесса

Арка моста, с более сильной ржавчиной с местах где разрушен лакокрасочный слой

Коррозионные процессы могут быть разделены:

  • по типу взаимного влияния металлов с окружающей атмосферой;
  • по типу коррозионной атмосферы и условиям самого процесса;
  • по характеристике дегенерационного воздействия;
  • на «скорость коррозии» очень сильно влияет тип окружающей атмосферы.

О видах коррозии

Всего существует несколько разновидностей коррозии металлических труб:

  • поверхностная, распространяющаяся по всей площади трубы;
  • местная, расположенная на отдельных участках;
  • щелевая, образовавшаяся в небольшой трещине.

Наиболее настораживает местная коррозия, так как основная масса повреждений происходит в результате ее появления. Развитие щелевой тоже распространено, но к существенным повреждениям материала она не приводит.

Процент вероятности возникновения коррозии в большую сторону отдается участкам труб, продолженных под железнодорожными переездами или под опорами линий воздушных электропередач. Скорость развития процесса коррозии колеблется от 3 до 30 мм в год.

Что такое химическая коррозия

Этот процесс возникает в неэлектропроводных средах. Ими могут оказаться газы, нефтепродукты и спиртовые соединения. При повышении температурных показателей скорость развития коррозии возрастает. Ржавчина может образовываться на цветных или черных металлах. Алюминиевые изделия под влиянием коррозионных факторов покрываются тонкой пленкой, которая после обеспечивает систему защиты и создает препятствие развитию окислительного процесса.

Сплавы могут быть восприимчивы к иному виду ржавчины, то есть присутствуют элементы, не подверженные окислению, а напротив, они восстановленные. К примеру, при повышенных температурных характеристиках и повышенном давлении восстанавливаются карбиды, но, опять же, утрачиваются нужные качества.

Об электрохимической коррозии

Утверждение о том, что электрохимическая коррозия достигается только при контактировании металлической поверхности с электролитом, ошибочно. Хватает тонкой пленки на основании материала, чтобы образовалась коррозия. Причиной этого вида ржавчины является использование поваренной или технической солей. К, примеру, если производится посыпка снега на дорогах, то страдают машины и проложенные под землей трубопроводы.

Процесс этого происхождения заключается в следующем:

  • В соединениях металлических конструкций теряются отчасти атомы, осуществляется их переход в электролитический раствор, то есть происходит образование ионов. Замещают электроны атомы, они заряжают материал отрицательными зарядами, при этом накапливаются положительные заряды в электролите.
  • Электрохимическую коррозию также вызывают блуждающие токи, которые при утечке из электроцепи уходят в растворы воды или в грунт, а после в саму структуру металла. Конкретными местами проявления ржавчины являются те участки, откуда в воду попадают блуждающие токи.

На видео: электрохимическая коррозия металлов и способы защиты.

Зачем дополнительно обрабатывать кузов, если это делают на заводе?

Многие автомобилисты считают, что коррозии подвержены только старые машины с внушительным пробегом, а новенькие авто не нуждаются в дополнительной антикоррозионной обработке. В действительности это далеко не так, так как обработка производителя скорее рассчитана на защиту автомобиля от заводских дефектов.

Производитель редко учитывает влияние подобных условий, к тому же качество заводской обработки не всегда обладает приемлемым уровнем.


Обработанное антикором днище

Многие автомобили оцинковывают при производстве, однако, эта мера тоже не является панацеей от коррозии. Толщина цинкового слоя весьма невелика, так что различные механические повреждения и вибронагрузка легко его разрушают.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector